Skip to main content
Log in

Quantum memory based on ensemble states of NV centers in diamond

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

In this study, the main results of experimental and theoretical investigations that substantiate the possibility of the development of quantum computational systems with a separate structure are considered and analyzed. These systems involve the operational part and the memory, as well as the communication quantum network, which performs the data exchange between them. We are starting to get knowledge about such hybrid quantum devices from studying the solid-state systems, in which the macroscopic number (ensemble) of NV centers in diamond is used as the memory element, while superconducting mesoscopic structures play the role of the operational element and quantum network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perez-Delgado, C.A. and Kok, P., Quantum Computers: Definition and Implementations, Phys. Rev. A:, 2011, vol. 83, p. 012303.

    Article  Google Scholar 

  2. Tsukanov, A.V., Superconducting Resonators and Charge Qubits: Spectroscopy and Quantum Operations. Part I, Russ. Microelectron., 2010, vol. 39, no.. 6, p. 378.

    Article  Google Scholar 

  3. Tsukanov, A.V., Superconducting Cavities and Charge Qubits: Spectroscopy and Quantum Operations. Part II, Russ. Microelectron., 2011, vol. 40, no.. 1, p. 8.

    Article  Google Scholar 

  4. Steger, M., Saeedi, K., Thewalt, M.L.W., Morton, J.J.L., Riemann, H., Abrosimov, N.V., Becker, P., and Pohl, H.-J., Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum”, Science, 2012, vol. 336, p. 1280.

    Article  Google Scholar 

  5. Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., and Wrachtrup, J., Ultralong Spin Coherence Time in Isotopically Engineered Diamond, Nature Mater., 2009, vol. 8, p. 383.

    Article  Google Scholar 

  6. Wallquist, M., Hammerer, K., Rabl, P., Lukin, M., and Zoller, P., Hybrid Quantum Devices and Quantum Engineering, Phys. Scr., 2009, vol. 137, p. 014001.

    Article  Google Scholar 

  7. Tsukanov, A.V., NV-Centers in Diamond. Part I. General Information, Fabrication Technology, and the Structure of the Spectrum, Russ. Microelectron., 2012, vol. 41, no.. 2, p. 91.

    Article  Google Scholar 

  8. Tsukanov, A.V., NV-Centers in Diamond. Part II. Spectroscopy, Spin-State Identification, and Quantum Manipulation, Russ. Microelectron., 2012, vol. 41, no.. 3, p. 145.

    Article  Google Scholar 

  9. Tsukanov, A.V., NV Centers in Diamond. Part III: Quantum Algorithms, Scaling, and Hybrid Systems, Russ. Microelectron., 2013, vol. 42, no.. 1, p.1.

    Article  Google Scholar 

  10. Fuchs, G.D., Burkard, G., Klimov, P.V., and Awschalom, D.D., A Quantum Memory Intrinsic to Single Nitrogen-Vacancy Centres in Diamond, Nature Phys., 2011, vol. 7, p. 789.

    Article  Google Scholar 

  11. Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M.L., Twitchen, D.J., Pezzagna, S., Meijer, J., Twamley, J., Jelezko, F., and Wrachtrup, J., Quantum Register Based on Coupled Electron Spins in a Room-Temperature Solid, Nature Phys., 2010, vol. 6, p. 249.

    Article  Google Scholar 

  12. Fischer, R., Jarmola, A., Kehayias, P., and Budker, D., Room-Temperature Optical Polarization of Nuclear Ensembles in Diamond, LANL E-print, 2012. ArXiv: quant-ph/1202.1072.

    Google Scholar 

  13. Verdu, J., Zoubi, H., Koller, Ch., Majer, J., Ritsch, H., and Schmiedmayer, J., Strong Magnetic Coupling of an Ultracold Gas to a Superconducting Waveguide Cavity, Phys. Rev. Lett., 2009, vol. 103, p. 043603.

    Article  Google Scholar 

  14. Schuster, D.I., Sears, A.P., Ginossar, E., DiCarlo, L., Frunzio, L., Morton, J.J.L., Wu, H., Briggs, G.A.D., Buckley, B.B., Awschalom, D.D., and Schoelkopf, R.J., High-Cooperativity Coupling of Electron-Spin Ensembles to Superconducting Cavities, Phys. Rev. Lett., 2010, vol. 105, p. 140501.

    Article  Google Scholar 

  15. Kubo, Y., Ong, F.R., Bertet, P., Vion, D., Jacques, V., Zheng, D., Dreau, A., Roch, J.-F., Auffeves, A., Jelezko, F., Wrachtrup, J., Barthe, M.F., Bergonzo, P., and Esteve, D., Strong Coupling of a Spin Ensemble to a Superconducting Cavity, Phys. Rev. Lett., 2010, vol. 105, p. 140502.

    Article  Google Scholar 

  16. Amsuss, R., Koller, Ch., Nobauer, T., Putz, S., Rotter, S., Sandner, K., Schneider, S., Schrambock, M., Steinhauser, G., Ritsch, H., Schmiedmayer, J., and Majer, J., Cavity QED with Magnetically Coupled Collective Spin States, Phys. Rev. Lett., 2011, vol. 107, p. 060502.

    Article  Google Scholar 

  17. Jarmola, A., Acosta, V.M., Jensen, K., Chemerisov, S., and Budker, D., Temperature- and Magnetic-Field-Dependent Longitudinal Spin Relaxation in Nitrogen-Vacancy Ensembles in Diamond, Phys. Rev. Lett., 2012, vol. 108, p. 197601.

    Article  Google Scholar 

  18. Kubo, Y., Diniz, I., Dewes, A., Jacques, V., Dreau, A., Roch, J.-F., Auffeves, A., Vion, D., Esteve, D., and Bertet, P., Storage and Retrieval of a Microwave Field in a Spin Ensemble, Phys. Rev. A, 2012, vol. 85, p. 012333.

    Article  Google Scholar 

  19. Kubo, Y., Grezes, C., Dewes, A., Umeda, T., Isoya, J., Sumiya, H., Morishita, N., Abe, H., Onoda, S., Ohshima, T., Jacques, V., Dreau, A., Roch, J.-F., Diniz, I., Auffeves, A., Vion, D., Esteve, D., and Bertet, P., Hybrid Quantum Circuit with a Superconducting Qubit Coupled to a Spin Ensemble, Phys. Rev. Lett., 2011, vol. 107, p. 220501.

    Article  Google Scholar 

  20. Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., and Schoelkopf, R.J., Coupling Superconducting Qubits Via a Cavity Bus, Nature, 2007, vol. 449, p. 443.

    Article  Google Scholar 

  21. Kubo, Y., Diniz, I., Grezes, C., Umeda, T., Isoya, J., Sumiya, H., Yamamoto, T., Abe, H., Onoda, S., Ohshima, T., Jacques, V., Dreau, A., Roch, J.-F., Auffeves, A., Vion, D., Esteve, D., and Bertet, P., Electron Spin Resonance Detected by a Superconducting Qubit, LANL E-print, 2012. ArXiv: quant-ph/1205.5659.

    Google Scholar 

  22. Zhu, X., Saito, S., Kemp, A., Kakuyanagi, K., Karimoto, S., Nakano, H., Munro, W.J., Tokura, Y., Everitt, M.S., Nemoto, K., Kasu, M., Mizuochi, N., and Semba, K., Coherent Coupling of a Superconducting Flux Qubit to an Electron Spin Ensemble in Diamond, Science, 2011, vol. 478, p. 221.

    Google Scholar 

  23. Diniz, I., Portolan, S., Ferreira, R., Gerard, J.M., Bertet, P., and Auffeves, A., Strongly Coupling a Cavity to Inhomogeneous Ensembles of Emitters: Potential for Long-Lived Solid-State Quantum Memories, Phys. Rev. A, 2011, vol. 84, p. 063810.

    Article  Google Scholar 

  24. Kurucz, Z., Wesenberg, J.H., and Molmer, K., Spectroscopic Properties of Inhomogeneously Broadened Spin Ensembles in a Cavity, Phys. Rev. A, 2011, vol. 83, p. 053852.

    Article  Google Scholar 

  25. Sandner, K., Ritsch, H., Amsuss, R., Koller, Ch., Nobauer, T., Putz, S., Schmiedmayer, J., and Majer, J., Strong Magnetic Coupling of an Inhomogeneous Nitrogen-Vacancy Ensemble to a Cavity, Phys. Rev. A, 2012, vol. 85, p. 053806.

    Article  Google Scholar 

  26. Cai, J.-M., Jelezko, F., Katz, N., Retzker, A., and Plenio, M.B., Long-Lived Driven Solid-State Quantum Memory, LANL E-print, 2012. ArXiv: quantph/1206.4430.

    Google Scholar 

  27. Twamley, J. and Barrett, S.D., Superconducting Cavity Bus for Single Nitrogen-Vacancy Defect Centers in Diamond, Phys. Rev. B, 2010, vol. 81, p. 241202.

    Article  Google Scholar 

  28. Hummer, T., Reuther, G.M., Hanggi, P., and Zueco, D., Nonequilibrium Phases in Hybrid Arrays with Flux Qubits and Nitrogen-Vacancy Centers, Phys. Rev. A, 2012, vol. 85, p. 052320.

    Article  Google Scholar 

  29. Yang, W.L., Hu, Y., Yin, Z.Q., Deng, Z.J., and Feng, M., Entanglement of Nitrogen-Vacancy-Center Ensembles Using Transmission Line Cavities and a Superconducting Phase Qubit, Phys. Rev. A, 2011, vol. 83, p. 022302.

    Article  Google Scholar 

  30. Yang, W.L., Yin, Z.Q., Hu, Y., Feng, M., and Du, J.F., High-Fidelity Quantum Memory Using Nitrogen-Vacancy Center Ensemble for Hybrid Quantum Computation, Phys. Rev. A, 2011, vol. 84, p. 010301.

    Article  Google Scholar 

  31. Yang, W.L., Yin, Z.Q., Chen, Q., Chen, C.Y., and Feng, M., Two-Mode Squeezing of Distant Nitrogen-Vacancy-Center Ensembles by Manipulating the Reservoir, Phys. Rev. A, 2012, vol. 85, p. 022324.

    Article  Google Scholar 

  32. Yang, W.L., Yin, Z.Q., Chen, Z.X., Kou, S.-P., Feng, M., and Oh, C.H., Quantum Simulation of an Artificial Abelian Gauge Field Using Nitrogen-Vacancy-Center Ensembles Coupled to Superconducting Cavities, Phys. Rev. A, 2012, vol. 86, p. 012307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tsukanov.

Additional information

Original Russian Text © A.V. Tsukanov, 2013, published in Mikroelektronika, 2013, Vol. 42, No. 3, pp. 163–185.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukanov, A.V. Quantum memory based on ensemble states of NV centers in diamond. Russ Microelectron 42, 127–147 (2013). https://doi.org/10.1134/S1063739713030086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739713030086

Keywords

Navigation