Skip to main content
Log in

Studying the Thermodynamic Properties of Composite Magnetic Material Based on Anodic Alumina

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

In this paper we study the thermodynamic, morphological, structural, and chemical properties of a composite material consisting of nickel nanowires (NWs) electrochemically deposited in the pores of the membrane of porous anodic aluminum oxide (PAA) by methods of differential thermal analysis (DTA), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and dispersive X-ray spectroscopy (EDX).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. The initial size of a substrate is 70 × 48 mm.

REFERENCES

  1. Mátéfi-Tempfli, S., Mátéfi-Tempfli, M., Vlad, A., et al., Nanowires and nanostructures fabrication using template methods: a step forward to real devices combining electrochemical synthesis with lithographic techniques, J. Mater. Sci.: Mater. Electron., 2009, vol. 20, no. 1, pp. S249–S254.

    Google Scholar 

  2. Vorobyova, A.I. and Outkina, E.A., Study of pillar microstructure formation with anodic oxides, Thin Solid Films, 1998, vol. 324, pp. 1–10.

    Article  Google Scholar 

  3. Lee, W. and Park, S.-J., Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures, Chem. Rev., 2014, vol. 114, pp. 7487–7556.

    Google Scholar 

  4. Gudkov, V.A., Vedeneev, A.S., Ryl’kov, V.V., Temirya-zeva, M.P., Kozlov, A.M., Nikolaev, S.N., Pankov, M.A., Golovanov, A.N., Semisalova, A.S., Perov, N.S., Dukhnovskii, M.P., and Bugaev, A.S., Synthesis of spatially ordered ensemble of Co nanocylinders in porous alumina matrix on surface of GaAs structures, Tech. Phys. Lett., 2013, vol. 39, no. 9, pp. 805–807.

    Article  Google Scholar 

  5. Brüggemann, D., Nanoporous aluminium oxide membranes as cell interfaces, J. Nanomater., 2013, vol. 2013, p. 460870.

    Article  Google Scholar 

  6. Law, C.S., Sylvia, G.M., Nemati, M., et al., Engineering of surface chemistry for enhanced sensitivity in nanoporous interferometric sensing platforms, Appl. Mater. Interfaces, 2017, vol. 9, no. 10, pp. 8929–8940.

    Article  Google Scholar 

  7. Vasiliev, A.A., Pavelko, R.G., Gogish-Klushin, S.Y., et al., Alumina MEMS platform for impulse semiconductor and IR optic gas sensors, Sens. Actuators, B, 2008, vol. 132, pp. 216–223.

    Article  Google Scholar 

  8. Feng, H., Elam, J.W., Libera, J.A., et al., Catalytic nanoliths, Chem. Eng. Sci., 2009, vol. 64, pp. 560–567.

    Article  Google Scholar 

  9. Ying, J.Y., Nanoporous systems and templates the unique self-assembly and synthesis of nanostructures, Sci. Spectra, 1999, vol. 18, pp. 56–63.

    Google Scholar 

  10. Li, A.P., Müller, F., and Birner, A., Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys., 1998, vol. 84, no. 11, pp. 6023–6026.

    Article  Google Scholar 

  11. Masuda, H. and Fukuda, K., Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science (Washington, DC, U. S.), 1995, vol. 268, pp. 1466–1468.

    Article  Google Scholar 

  12. Vorobjova, A.I., Prudnikova, E., Shaman, Y., et al., Specific features of the carbon nanotubes nucleation and growth in the porous alumina membrane, Adv. Mater. Sci. Appl., 2014, vol. 3, no. 2, pp. 46–52.

    Google Scholar 

  13. Friedman, A.L. and Menon, L., Optimal parameters for synthesis of magnetic nanowires in porous alumina templates, J. Electrochem. Soc., 2007, vol. 154, pp. E68–E70.

    Article  Google Scholar 

  14. Zhu, R., Zhang, H., Chen, Z., et al., Horizontally aligned single array of Co nanowires fabricated in one-dimensional nanopore array template, Electrochem. Solid-State Lett., 2008, vol. 11, no. 6, pp. K57–K60.

    Article  Google Scholar 

  15. Puydinger dos Santos, M.V., Velo, M., Domingos, R.D., et al., Electrodeposited nickel nanowires for magnetic-field effect transistor (MagFET), J. Integr. Circ. Syst., 2016, vol. 11, pp. 13–18.

    Google Scholar 

  16. Mei, Q.S. and Lu, K., Melting and superheating of crystalline solids: from bulk to nanocrystals, Prog. Mater. Sci., 2007, no. 52, pp. 1175–1262.

  17. Shilyaeva, Yu.I., Bardushkin, V.V., Gavrilov, S.A., et al., Melting temperature of metal polycrystalline nanowires electrochemically deposited into the pores of anodic aluminum oxide, Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 19394–19401.

    Article  Google Scholar 

  18. Shilyaeva, Yu., Gavrilov, S., Dudin, A., et al., Anodic aluminium oxide templates for synthesis and study of thermal behavior of metallic nanowires, Surf. Interface Anal., 2015. wileyonlinelibrary.com. https://doi.org/10.1002/sia.5892

  19. Andrievskii, R.A., Nanomaterials: concept and contemporary problems, Ross. Khim. Zh., 2002, vol. 46, no. 5, pp. 50–56.

    Google Scholar 

  20. Huber, T., Degischer, H.P., Lefranc, G., et al., Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles, Compos. Sci. Technol., 2006, vol. 66, pp. 2206–2217.

    Article  Google Scholar 

  21. Vorob’eva, A.I., Shimanovich, D.L., and Sycheva, O.A., Studying the thermodynamic characteristics of anodic alumina, Russ. Microelectron., 2018, vol. 47, no. 1, pp. 40–49.

    Article  Google Scholar 

  22. Babichev, A.P., Babushkina, N.A., and Bratkovskii, A.M., Fizicheskie velichiny. Spravochnik (Physical Values, The Handbook), Moscow: Energoatomizdat, 1991.

  23. Sharma, N.K., Misra, R.K., and Sharma, S., Thermal expansion behavior of Ni–Al2O3 composites with particulate and interpenetrating phase structures: an analysis using finite element method, Comput. Mater. Sci., 2014, vol. 90, pp. 130–136.

    Article  Google Scholar 

  24. Bruck, H.A. and Rabin, B.H., An evaluation of role of mixtures predictions of thermal expansion in powder processed Ni–Al2O3 compositor, J. Am. Ceram. Soc., 1999, vol. 82, no. 10, pp. 2927–2930.

    Article  Google Scholar 

  25. Dzumaliev, A.S., Nikulin, Y.V., and Filimonov, Y.A., Magnetic properties and microstructure of thin polycrystalline nickel films with (200) texture, in Proceedings of the Moscow International Symposium on Magnetism, 2011, p. 408.

  26. Ryabukhin, A.G., Novoselova, E.G., and Samarin, I.I., Nickel oxidation in air to form thin films, Vestn. YuUrGU, 2005, no. 10, pp. 34–40.

  27. Oxidation of Metals, Benard, J., Ed., Paris: Cauthier-Villars, 1964, vol. 1.

    Google Scholar 

  28. Korznikov, A.V., Korznikova, G.F., Myshlyaev, M.M., et al., Evolution of nanocrystalline Ni structure during heating, Phys. Met. Metallogr., 1997, vol. 84, no. 4, pp. 413–417.

    Google Scholar 

  29. Krasnoperova, Yu.G., Voronova, L.M., Degtyarev, M.V., Chashchukhina, T.I., and Resnina, N.N., Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation, Phys. Met. Metallogr., 2015, vol. 116, no. 1, pp. 79–86.

    Article  Google Scholar 

  30. Wang, H., Li, M., Li, X., et al., Preparation and thermal stability of nickel nanowires via self-assembly process under magnetic field, Bull. Mater. Sci., 2015, vol. 38, no. 5, pp. 1285–1289.

    Article  Google Scholar 

  31. Cai, Q., Zhang, J., Chen, X., Chen, Z., et al., Structural study on Ni nanowires in an anodic alumina membrane by using in situ heating extended X-ray absorption fine structure and x-ray diffraction techniques, J. Phys.: Condens. Matter., 2008, vol. 20, pp. 115–205.

    Google Scholar 

  32. Gleiter, H., Nanostructured materials: basic concepts and microstructure, Acta Mater., 2000, vol. 48, pp. 1–29.

    Article  Google Scholar 

  33. Xu, J., Chen, L., Mathewson, A., et al., Ultra-long metal nanowire arrays on solid substrate with strong bonding, Nanoscale Res. Lett., 2011, vol. 6, pp. 1–7.

    Google Scholar 

  34. Furneaux, R.C., Rigby, W.R., and Davidson, A.P., The formation of controlled-porosity membranes from anodically oxidized aluminum, Nature (London, U.K.), 1989, vol. 337, pp. 147–149.

    Article  Google Scholar 

  35. Vorobjova, A.I., Shimanovich, D.L., Yanushkevich, K.I., et al., Properties of Ni and Ni–Fe nanowires electrochemically deposited into a porous alumina template, Beilstein J. Nanotechnol., 2016, no. 7, pp. 1709–1717.

  36. Vorobjova, A.I., Shimanovich, D.L., Outkina, E.A., et al., Highly ordered through-holes porous alumina membranes for nanowires fabrication, Appl. Phys. A, 2018, vol. 1, pp. 124–132.

    Google Scholar 

  37. Song, P., Wen, D., Guo, Z.X., et al., Oxidation investigation of nickel nanoparticles, Phys. Chem. Chem. Phys., 2008, vol. 10, pp. 5057–5065.

    Article  Google Scholar 

  38. Jagminas, A., Mažeika, K., Reklaitis, J., et al., Annealing effects on the transformations of Fe nanowires encapsulated in the alumina template pores, Mater. Chem. Phys., 2009, vol. 115, pp. 217–222.

    Article  Google Scholar 

  39. Thuvander, M., Abraham, M., Cerezo, A., et al., Thermal stability of electrodeposited nanocrystalline nickel and iron-nickel alloys, Mater. Sci. Technol., 2001, vol. 17, no. 8, pp. 961–970.

    Article  Google Scholar 

  40. Chang, W.-S., Yang, W., Guo, J.-M., et al., Thermal stability of Ni–Fe alloy foils continuously electrodeposited in a fluorborate bath, Open J. Metal., 2012, vol. 2, pp. 18–23. http://www.SciRP.org/journal/ojmetal.

    Book  Google Scholar 

  41. Gorelik, S.S., Rekristallizatsiya metallov i splavov (Recrystallization of Metals and Alloys), Moscow: MISIS, 2005.

  42. Cacciamani, G., Dinsdale, A., Palumbo, M., et al., The Fe–Ni system: thermodynamic modelling assisted by atomistic calculations, Intermetallics, 2011, vol. 18, no. 6, pp. 1148–1162.

    Article  Google Scholar 

  43. Aleshin, A.H., Kinetic constants of abnormal grain growth in nanocrystalline nickel, Phys. Solid State, 2016, vol. 58, no. 2, pp. 413–420.

    Article  Google Scholar 

  44. Cheung, C., Djuanda, F., Erb, U., et al., Electrodeposition of nanocrystalline Ni–Fe alloys, Nanostruct. Mater., 1995, vol. 5, no. 5, pp. 513–523.

    Article  Google Scholar 

  45. Dzhumaliev, A.S., Nikulin, Yu.V., and Filimonov, Yu.A., Effect of annealing temperature and rate of sputtering on the magnetic properties and microstructure of the polycrystalline nickel films with (200) texture, J. Commun. Technol. Electron., 2012, vol. 57, no. 5, pp. 498–505.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed under the financial support of the State Scientific and Technical Program Nanotechnologies and Nanomaterials of the Ministry of Education of the Republic of Belarus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Vorobjova.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobjova, A.I., Shimanovich, D.L., Sycheva, O.A. et al. Studying the Thermodynamic Properties of Composite Magnetic Material Based on Anodic Alumina. Russ Microelectron 48, 107–118 (2019). https://doi.org/10.1134/S1063739719020100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739719020100

Navigation