Skip to main content
Log in

The influence of ultrahigh-energy cosmic rays on star formation in the early Universe

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The presence of ultrahigh-energy (UHE) cosmic rays results in an increase in the degree of ionization in the post-recombination Universe, which stimulates the efficiency of the production of H2 molecules and the formation of the first stellar objects. As a result, the onset of the formation of the first stars is shifted to higher redshifts, and the masses of the first stellar systems decrease. As a consequence, a sufficient increase in the ionizing radiation providing the reionization of the Universe can occur. We discuss the possible observational manifestations of these effects and their dependence on the parameters of UHE cosmic rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Berezinsky, M. Kachelrieß, and A. Vilenkin, Phys. Rev. Lett. 79, 4302 (1997).

    Article  ADS  Google Scholar 

  2. V. A. Kuzmin and V. A. Rubakov, Phys. At. Nucl. 61, 1028 (1998).

    Google Scholar 

  3. M. Birkel and S. Sarkar, Astropart. Phys. 9, 298 (1998).

    Article  ADS  Google Scholar 

  4. K. Greisen, Phys. Rev. Lett. 16, 748 (1966).

    Article  ADS  Google Scholar 

  5. G. T. Zatsepin and V. A. Kuz’min, Pis’ma Zh. Eksp. Teor. Fiz. 4, 114 (1966) [JETP Lett. 4, 78 (1966)].

    Google Scholar 

  6. A. G. Doroshkevich and P. D. Naselsky, Phys. Rev. D 12, 123517 (2002).

    Google Scholar 

  7. A. G. Doroshkevich, I. P. Naselsky, P. D. Naselsky, and I. D. Novikov, Astrophys. J. 586, 709 (2003).

    Article  ADS  Google Scholar 

  8. W. C. Saslaw and D. Zipoy, Nature 216, 967 (1967).

    Article  Google Scholar 

  9. D. N. Spergel, L. Verde, H. V. Peiris, et al., Astophys. J., Suppl. Ser. 148, 175 (2003).

    Article  ADS  Google Scholar 

  10. P. J. E. Peebles, S. Seager, and W. Hu, Astrophys. J. 539, L1 (2000).

    Article  ADS  Google Scholar 

  11. P. Bhattacharjee, and G. Sigl, Phys. Rept. 327, 109 (2000).

    Article  ADS  Google Scholar 

  12. M. Tegmark, J. Silk, M. J. Rees, et al., Astophys. J. 474, 1 (1997).

    Article  ADS  Google Scholar 

  13. J. B. Hutchins, Astrophys. J. 205, 103 (1976).

    Article  ADS  Google Scholar 

  14. T. Hirasawa, Progr. Theor. Phys. 42, 523 (1969).

    Article  ADS  Google Scholar 

  15. P. R. Shapiro and H. Kang, Astrophys. J. 318, 32 (1987).

    Article  ADS  Google Scholar 

  16. Z. Karpas, V. Anicich, and W. T. Huntress, J. Chem. Phys. 70, 2877 (1979).

    Article  ADS  Google Scholar 

  17. D. Galli and F. Palla, Astron. Astropys. 335, 403 (1998).

    ADS  Google Scholar 

  18. D. A. Varshalovich and V. K. Khersonskii, Pis’ma Astron. Zh. 2, 574 (1976) [Sov. Astron. Lett. 2, 227 (1976)].

    ADS  Google Scholar 

  19. Yu. A. Shchekinov, Pis’ma Astron. Zh. 12, 499 (1986) [Sov. Astron. Lett. 12, 211 (1986)].

    ADS  Google Scholar 

  20. M. Tegmark, J. Silk, and A. Evrard, Astrophys. J. 417, 54 (1993).

    Article  ADS  Google Scholar 

  21. D. Puy and M. Signore, New Astron. 3, 247 (1998).

    Article  ADS  Google Scholar 

  22. F. Palla, S. W. Stahler, and E. E. Salpeter, Astrophys. J. 271, 632 (1983).

    Article  ADS  Google Scholar 

  23. S. W. Stahler, F. Palla, and E. E. Salpeter, Astrophys. J. 302, 590 (1986).

    Article  ADS  Google Scholar 

  24. R. Barkana and A. Loeb, Phys. Rept. 349, 125 (2001).

    Article  ADS  Google Scholar 

  25. A. Ferrara, Astrophys. J. 499, L17 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Kogut, D. N. Spergel, C. Barnes, et al., Astrophys. J., Suppl. Ser. 148, 161 (2003).

    Article  ADS  Google Scholar 

  27. R. Becker, X. Fan, R. L. White, et al., Astron. J. 122, 2850 (2001).

    Article  ADS  Google Scholar 

  28. X. Fan, V. K. Narayanan, M. A. Strauss, et al., Astron. J. 123, 1247 (2002).

    Article  ADS  Google Scholar 

  29. R. Cen, Astrophys. J. 591, 12 (2003).

    Article  ADS  Google Scholar 

  30. P. Madau, M. J. Rees, M. Volonteri, et al., Astophys. J. 604, 484 (2004).

    Article  ADS  Google Scholar 

  31. R. Cen, Astrophys. J. 591, L5 (2003).

    Article  ADS  Google Scholar 

  32. D. W. Sciama, Mon. Not. R. Astron. Soc. 198, 1 (1982).

    ADS  Google Scholar 

  33. D. W. Sciama, Phys. Rev. Lett. 65, 2839 (1990).

    Article  ADS  Google Scholar 

  34. S. H. Hansen and Z. Haiman, Astrophys. J. 600, 26 (2004).

    Article  ADS  Google Scholar 

  35. W. H. Press and P. Schechter, Astrophys. J. 187, 425 (1974).

    Article  ADS  Google Scholar 

  36. T. Abel, G. L. Bryan and M. Norman, Science 295, 93 (2002).

    Article  ADS  Google Scholar 

  37. S. Marri, A. Ferrara, and L. Pozzetti, Mon. Not. R. Astron. Soc. 317, 265 (2000).

    Article  ADS  Google Scholar 

  38. T. Abel, P. Anninos, Y. Zhang, and M. L. Norman, 508, 518 (1998).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.O. Vasiliev, Yu.A. Shchekinov, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 10, pp. 872–879.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasiliev, E.O., Shchekinov, Y.A. The influence of ultrahigh-energy cosmic rays on star formation in the early Universe. Astron. Rep. 50, 778–784 (2006). https://doi.org/10.1134/S1063772906100027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772906100027

PACS numbers

Navigation