Skip to main content
Log in

Instabilities in the ionization zones around the first stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We consider the evolution of the ionization zone around Population III stars with M * ∼ 25–200M in protogalaxies with M ∼ 107 M at redshifts z = 12, assuming that the dark-energy profile is a modified isothermal sphere. We study the conditions for the growth of instabilities in the ionization zones. The Rayleigh-Taylor and thermal instabilities develop efficiently in the ionization zones around 25–40M stars, while this efficiency is lower for stars withM * ∼ 120M . For more massive stars (∼200M ), the flux of ionizing photons is strong enough to considerably reduce the gas density in the ionization zone, and the typical lifetimes of stars (∼2 Myr) are insufficient for the growth of instabilities. The gas in a protogalaxy with M ∼ 107 M with a 200M central star is completely ionized by the end of the star’s lifetime; in the case of a 120M central star, only one-third of the total mass of gas is ionized. Thus, ionizing photons from stars with M * ≲ 120M cannot leave protogalaxies with M ≳ 107 M . If the masses of the central stars are 25 and 40M , the gas in protogalaxies of this mass remains essentially neutral. We discuss the consequences of the evolution of the ionization zones for the propagation of the envelope after the supernova explosions of the strs and the efficiency of enrichment of the intergalactic medium in heavy elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. T. Vishniac, Astrophys. J. 274, 152 (1983).

    Article  ADS  Google Scholar 

  2. M.-M. Mac Low and M. L. Norman, Astrophys. J. 407, 207 (1993).

    Article  ADS  Google Scholar 

  3. R. J. R. Williams, Mon.Not. R. Astron. Soc. 310, 789 (1999).

    Article  ADS  Google Scholar 

  4. M. A. de Avillez and M.-M. Mac Low, Astrophys. J. 581, 1047 (2002).

    Article  ADS  Google Scholar 

  5. J. Scalo and B. G. Elmegreen, Ann. Rev. Astron. Astrophys. 42, 275 (2004).

    Article  ADS  Google Scholar 

  6. D. Whalen, T. Abel, and M. L. Norman, Astrophys. J. 610, 14 (2004).

    Article  ADS  Google Scholar 

  7. M. A. Alvarez, V. Bromm, and P. R. Shapiro, Astrophys. J. 639, 621 (2006).

    Article  ADS  Google Scholar 

  8. B.W. O’shea, T. Abel, D. Whalen, and M. L. Norman, Astrophys. J. Lett. 628, 5 (2005).

    Article  ADS  Google Scholar 

  9. T. Abel, J. H. Wise, and G. L. Bryan, Astrophys. J. Lett. 659, 87 (2007).

    Article  ADS  Google Scholar 

  10. T. Kitayama, N. Yoshida, H. Susa, and M. Umemura, Astrophys. J. 613, 631 (2004).

    Article  ADS  Google Scholar 

  11. H. Yajima, M. Umemura, M. Mori, and T. Nakamoto, Mon. Not. R. Astron. Soc. 398, 715 (2009).

    Article  ADS  Google Scholar 

  12. J. H. Wise and R. Cen, Astrophys. J. 693, 984 (2009).

    Article  ADS  Google Scholar 

  13. T. H. Greif, J. L. Johnson, R. S. Klessen, and V. Bromm, Mon. Not. R. Astron. Soc. 399, 639 (2009).

    Article  ADS  Google Scholar 

  14. A. Mesinger, G. L. Bryan, and Z. Haiman, Mon. Not. R. Astron. Soc. 399, 1650 (2009).

    Article  ADS  Google Scholar 

  15. D. Whalen and M. L. Norman, Astrophys. J. 673, 664 (2008).

    Article  ADS  Google Scholar 

  16. D. N. Spergel, R. Bean, O. Doré, et al., Astrophys. J. Suppl. Ser. 170, 377 (2007).

    Article  ADS  Google Scholar 

  17. E. O. Vasiliev, E. I. Vorobyov, and Yu. A. Shchekinov, Astron. Astrophys. 489, 505 (2008).

    Article  ADS  Google Scholar 

  18. I. T. Iliev, B. Ciardi, M. A. Alvarez, et al., 371, 1057 (2006).

  19. E. O. Vasiliev, E. I. Vorobyov, and Yu. A. Shchekinov, Astron. Rep. 54, 890 (2010).

    Article  ADS  Google Scholar 

  20. B. Ciardi and A. Ferrara, Space Sci. Rev. 116, 625 (2005).

    Article  ADS  Google Scholar 

  21. Yu. A. Shchekinov and E. O. Vasiliev, Mon. Not. R. Astron. Soc. 368, 454 (2006).

    ADS  Google Scholar 

  22. M. Tegmark, J. Silk, M. J. Rees, et al., Astrophys. J. 474, 1 (1997).

    Article  ADS  Google Scholar 

  23. A. Heger and S. Woosley, Astrophys. J. 567, 532 (2002).

    Article  ADS  Google Scholar 

  24. D. Schaerer, Astron. Astrophys. 382, 28 (2002).

    Article  ADS  Google Scholar 

  25. M. L. Norman, J. R. Wilson, and R. Barton, Astrophys. J. 239, 968 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  26. P. Collela and P. R. Woodward, J. Comp. Phys. 54, 174 (1984).

    Article  ADS  Google Scholar 

  27. E. I. Vorobyov, U. Klein, Yu. A. Shchekinov, and J. Ott, Astron. Astrophys. 413, 939 (2004).

    Article  ADS  Google Scholar 

  28. T. Abel, P. Anninos, Yu. Zhang, and M. L. Norman, New Astron. 2, 181 (1997).

    Article  ADS  Google Scholar 

  29. E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow (Elsevier, New York, 1987; Mir, Moscow, 1990).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Vasiliev.

Additional information

Original Russian Text © E.O. Vasiliev, E.I. Vorobyov, A.O. Razoumov, Yu.A. Shchekinov, 2012, published in Astronomicheskii Zhurnal, 2012, Vol. 89, No. 7, pp. 624–632.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasiliev, E.O., Vorobyov, E.I., Razoumov, A.O. et al. Instabilities in the ionization zones around the first stars. Astron. Rep. 56, 564–571 (2012). https://doi.org/10.1134/S1063772912060066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772912060066

Keywords

Navigation