Skip to main content
Log in

Evolution of the first supernovae in protogalaxies: Dynamics of mixing of heavy elements

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The paper considers the evolution of the supernova envelopes produced by Population III stars with masses ofM * ∼ 25–200M located in non-rotating protogalaxies with masses of M ∼ 107 M at redshifts z = 12, with dark-matter density profiles in the form of modified isothermal spheres. The supernova explosion occurs in the ionization zone formed by a single parent star. The properties of the distribution of heavy elements (metals) produced by the parent star are investigated, as well as the efficiency with which they are mixed with the primordial gas in the supernova envelope. In supernovae with high energies (E ≳ 5 × 1052 erg), an appreciable fraction of the gas can be ejected from the protogalaxy, but nearly all the heavy elements remain in the protogalaxy. In explosions with lower energies (E ≲ 3 × 1052 erg), essentially no gas and heavy elements are lost from the protogalaxy: during the first one to threemillion years, the gas and heavy elements are actively carried from the central region of the protogalaxy (r ∼ 0.1r v , where r v is the virial radius of the protogalaxy), but an appreciable fraction of the mass of metals subsequently returns when the hot cavity cools and the envelope collapses. Supernovae with high energies (E ≳ 5 × 1052 erg) are characterized by a very low efficiency of mixing of metals; their heavy elements are located in the small volume occupied by the disrupted envelope (in a volume comparable with that of the entire envelope), with most of the metals remaining inside the hot, rarified cavity of the envelope. At the same time, the efficiency of mixing of heavy elements in less energetic supernovae (E ≲ 3 × 1052 erg) is appreciably higher. This comes about due to the disruption of the hot cavity during the collapse of the supernova envelope. However, even in this case, a clear spatial separation of regions enriched and not enriched in metals is visible. During the collapse of the supernova envelope, the metallicity of the gas is appreciably higher in the central region ([Z] ∼ −1 to 0) than at the periphery ([Z] ∼ −2 to −4) of the protogalaxy; most of the enriched gas has metallicities [Z] ∼ −3.5 to −2.5. The masses of enriched fragments of the supernova envelope remain appreciably lower than the Jeans mass, except in regions at the center of the protogalaxy upon which the surrounding enriched gas is efficiently accreted. Consequently, the birth of stars with metallicities close to those characteristic of present-day Galactic stars is very probable in the central region of the protogalaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tegmark, J. Silk, M. J. Rees, et al., Astrophys. J. 474, 1 (1997).

    Article  ADS  Google Scholar 

  2. Yu. A. Shchekinov and E. O. Vasiliev, Mon. Not. R. Astron. Soc. 368, 454 (2006).

    ADS  Google Scholar 

  3. S. C. O. Glover, Space Sci. Rev. 117, 445 (2005).

    Article  ADS  Google Scholar 

  4. K. Omukai and F. Palla, Astrophys. J. 589, 677 (2003).

    Article  ADS  Google Scholar 

  5. D. Schaerer, Astron. Astrophys. 382, 28 (2002).

    Article  ADS  Google Scholar 

  6. T. Abel, G. L. Bryan, and M. L. Norman, Science 295, 93 (2002).

    Article  ADS  Google Scholar 

  7. P. C. Clark, S. C. O. Glover, and R. S. Klessen, Astrophys. J. 672, 757 (2008).

    Article  ADS  Google Scholar 

  8. A. Stacy, T. H. Greif, and V. Bromm, Mon. Not. R. Astron. Soc. 403, 45 (2010).

    Article  ADS  Google Scholar 

  9. P. C. Clark, S. C. O. Glover, R. S. Klessen, and V. Bromm, Astrophys. J. 727, 110 (2011).

    Article  ADS  Google Scholar 

  10. E. O. Vasiliev, E. I. Vorob’ev, and Yu. A. Shchekinov, Astron. Rep. 54, 890 (2010).

    Article  ADS  Google Scholar 

  11. D. Whalen, T. Abel, and M. L. Norman, Astrophys. J. 610, 14 (2004).

    Article  ADS  Google Scholar 

  12. M. A. Alvarez, V. Bromm, and P. R. Shapiro, Astrophys. J. 639, 621 (2006).

    Article  ADS  Google Scholar 

  13. B. W. O’shea, T. Abel, D. Whalen, and M. L. Norman, Astrophys. J. 628, 5 (2005).

    Article  Google Scholar 

  14. T. Abel, J. H. Wise, and G. L. Bryan, Astrophys. J. 659, 87 (2007).

    Article  ADS  Google Scholar 

  15. T. Kitayama, N. Yoshida, H. Susa, and M. Umemura, Astrophys. J. 613, 631 (2004).

    Article  ADS  Google Scholar 

  16. A. Mesinger, G. L. Bryan, and Z. Haiman, Mon.Not. R. Astron. Soc. 399, 1650 (2009).

    Article  ADS  Google Scholar 

  17. D. Whalen and M. L. Norman, Astrophys. J. 673, 664 (2008).

    Article  ADS  Google Scholar 

  18. E. O. Vasiliev, E. I. Vorob’ev, A. O. Razumov, and Yu. A. Shchekinov, Astron. Zh. 89, 624 (2012).

    Google Scholar 

  19. V. Bromm, N. Yoshida, and L. Hernquist, Astrophys. J. 596, 135 (2003).

    Article  ADS  Google Scholar 

  20. T. H. Greif, J. L. Johnson, V. Bromm, and R. S. Klessen, Astrophys. J. 670, 1 (2007).

    Article  ADS  Google Scholar 

  21. T. Nagakura, T. Hosokawa, and K. Omukai, Mon. Not. R. Astron. Soc. 399, 2183 (2009).

    Article  ADS  Google Scholar 

  22. M. Trenti and M. Stiavelli, Astrophys. J. 694, 879 (2009).

    Article  ADS  Google Scholar 

  23. T. H. Greif, S. C. O. Glover, V. Bromm, and R. S. Klessen, Astrophys. J. 716, 510 (2010).

    Article  ADS  Google Scholar 

  24. J. H. Wise and T. Abel, Astrophys. J. 685, 40 (2008).

    Article  ADS  Google Scholar 

  25. J. H. Wise, M. J. Turk, M. L. Norman, and T. Abel, Astrophys. J. 745, 50 (2012).

    Article  ADS  Google Scholar 

  26. U. Maio, S. Khochfar, J. L. Johnson, and B. Ciardi, Mon. Not. R. Astron. Soc. 414, 1145 (2011).

    Article  ADS  Google Scholar 

  27. A. Heger and S. Woosley, Astrophys. J. 567, 532 (2002).

    Article  ADS  Google Scholar 

  28. C. C. Joggerst, A. Almgren, J. Bell, et al., Astrophys. J. 709, 11 (2010).

    Article  ADS  Google Scholar 

  29. C. C. Joggerst and D. Whalen, Astrophys. J. 728, 129 (2011).

    Article  ADS  Google Scholar 

  30. T. Kitayama and N. Yoshida, Astrophys. J. 630, 675 (2005).

    Article  ADS  Google Scholar 

  31. D. Whalen, B. van Veelen, B. W. O’shea, and M. L. Norman, Astrophys. J. 682, 49 (2008).

    Article  ADS  Google Scholar 

  32. P. Madau, A. Ferrara, and M. Rees, Astrophys. J. 555, 92 (2001).

    Article  ADS  Google Scholar 

  33. A. Ferrara, M. Pettini, and Yu. A. Shchekinov, Mon. Not. R. Astron. Soc. 319, 539 (2000).

    Article  ADS  Google Scholar 

  34. V. Bromm, A. Ferrara, P. S. Coppi, and R. B. Larson, Mon. Not. R. Astron. Soc. 328, 969 (2001).

    Article  ADS  Google Scholar 

  35. V. Bromm and A. Loeb, Nature 425, 812 (2003).

    Article  ADS  Google Scholar 

  36. F. Santoro and J. M. Shull, Astrophys. J. 643, 26 (2006).

    Article  ADS  Google Scholar 

  37. K. Omukai, T. Tsuribe, R. Schneider, and A. Ferrara, Astrophys. J. 626, 627 (2005).

    Article  ADS  Google Scholar 

  38. M. L. Norman, AIP Conf. Proc. 1294, 17 (2010).

    Article  ADS  Google Scholar 

  39. U. Maio, B. Ciardi, K. Dolag, et al., Mon. Not. R. Astron. Soc. 407, 1003 (2010).

    Article  ADS  Google Scholar 

  40. J. Mackey, V. Bromm, and L. Hernquist, Astrophys. J. 586, 1 (2003).

    Article  ADS  Google Scholar 

  41. A. A. Kabanov and B. M. Shustov, Astron. Rep. 55, 784 (2011).

    Article  ADS  Google Scholar 

  42. T. Karlsson, V. Bromm, and J. Bland-Hawthorn, Rev. Mod. Phys. (in press); arXiv:1101.4024 [astro-ph] (2011).

  43. T. Beers, G. Preston, and S. Shectman, Astron. J. 103, 1987 (1992).

    Article  ADS  Google Scholar 

  44. N. Christlieb, M. S. Bessel, T. C. Beers, et al., Nature 419, 904 (2002).

    Article  ADS  Google Scholar 

  45. J. E. Norris, N. Christlieb, A. J. Korn, et al., Astrophys. J. 670, 774 (2007).

    Article  ADS  Google Scholar 

  46. A. Frebel, R. Collet, K. Eriksson, et al., Astrophys. J. 684, 588 (2008).

    Article  ADS  Google Scholar 

  47. M. S. Bessell, N. Christlieb, and B. Gustafsson, Astrophys. J. 612, 61 (2004).

    Article  ADS  Google Scholar 

  48. A. Frebel, N. Christlieb, J. E. Norris, et al., Astrophys. J. 638, 17 (2006).

    Article  ADS  Google Scholar 

  49. E. Caffau, P. Bonifacio, P. François, et al., Nature 477, 67 (2011).

    Article  ADS  Google Scholar 

  50. M. A. de Avillez and M.-M. MacLow, Astrophys. J. 581, 1047 (2002).

    Article  ADS  Google Scholar 

  51. S. Yu. Dedikov and Yu. A. Shchekinov, Astron. Rep. 48, 9 (2004).

    Article  ADS  Google Scholar 

  52. E. O. Vasiliev, S. Yu. Dedikov, and Yu. A. Shchekinov, Astrophys. Bull. 64, 317 (2009).

    Article  ADS  Google Scholar 

  53. E. T. Vishniac, Astrophys. J. 274, 152 (1983).

    Article  ADS  Google Scholar 

  54. F. Hoyle, in Problems of Cosmical Aerodynamics, Ed. by J.M. Burgers and H.C. van de Hulst (Centeral Air Documents Office, Dayton, 1949), p. 195.

    Google Scholar 

  55. P. J. E. Peebles, Astrophys. J. 155, 393 (1969).

    Article  ADS  Google Scholar 

  56. A. G. Doroshkevich, Astrofizika 6, 581 (1970).

    MathSciNet  ADS  Google Scholar 

  57. A. G. Doroshkevich, Astrophys. Lett. 14, 11 (1973).

    ADS  Google Scholar 

  58. J. H. Wise and T. Abel, Astrophys. J. 665, 899 (2007).

    Article  ADS  Google Scholar 

  59. D. N. Spergel, R. Bean, O. Doré, et al., Astrophys. J. Suppl. Ser. 170, 377 (2007).

    Article  ADS  Google Scholar 

  60. E. O. Vasiliev, E. I. Vorobyov, and Yu. A. Shchekinov, Astron. Astrophys. 489, 505 (2008).

    Article  ADS  Google Scholar 

  61. B. Ciardi and A. Ferrara, Space Sci. Rev. 116, 625 (2005).

    Article  ADS  Google Scholar 

  62. S.W. Stahler, F. H. Shu, and R. E. Taam, Astrophys. J. 241, 637 (1980).

    Article  ADS  Google Scholar 

  63. S. A. Woosley and T. A. Weaver, Astrophys. J. Suppl. Ser. 101, 181 (1995).

    Article  ADS  Google Scholar 

  64. M. L. Norman, J. R. Wilson, and R. Barton, Astrophys. J. 239, 968 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  65. P. Collela and P. R. Woodward, J. Comp. Phys. 54, 174 (1984).

    Article  ADS  Google Scholar 

  66. E. I. Vorobyov, U. Klein, Yu. A. Shchekinov, and J. Ott, Astron. Astrophys. 413, 939 (2004).

    Article  ADS  Google Scholar 

  67. P. R. Shapiro and H. Kang, Astrophys. J. 318, 32 (1987).

    Article  ADS  Google Scholar 

  68. T. Abel, P. Anninos, Yu. Zhang, and M. L. Norman, New Astron. 2, 181 (1997).

    Article  ADS  Google Scholar 

  69. D. Galli and F. Palla, Astron. Astrophys. 335, 403 (1998).

    ADS  Google Scholar 

  70. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge Univ. Press, Cambridge, 1992).

    MATH  Google Scholar 

  71. R. Cen, Astrophys. J. Suppl. Ser. 78, 341 (1992).

    Article  ADS  Google Scholar 

  72. D. Flower, Mon. Not. R. Astron. Soc. 318, 875 (2000).

    Article  ADS  Google Scholar 

  73. A. Lipovka, R. Núñez-López, and V. Avila-Reese, Mon. Not. R. Astron. Soc. 361, 850 (2005).

    Article  ADS  Google Scholar 

  74. E. O. Vasiliev, Mon. Not. R. Astron. Soc. 414, 3145 (2011).

    Article  ADS  Google Scholar 

  75. D. A. Varshalovich and V. K. Khersonskii, Sov. Astron. Lett. 2, 227 (1976).

    ADS  Google Scholar 

  76. D. Puy, G. Alecian, J. Le Bourlot, et al., Astron. Astrophys. 267, 337 (1993).

    ADS  Google Scholar 

  77. D. A. Varshalovich, V. K. Khersonskii, and R. A. Syunyaev, Astrofizika 17, 487 (1981).

    ADS  Google Scholar 

  78. J. S. Bullock, in Proceedings of the 20th Canary Islands Winter School of Astrophysics on Local Group Cosmology, Ed. by D. Martínez-Delgado (in press); arXiv:1009.4505 [astro-ph] (2010).

  79. R. S. de Souza, L. F. S. Rodrigues, E. E. O. Ishida, and R. Opher, Mon. Not. R. Astron. Soc. 415, 2969 (2011).

    Article  ADS  Google Scholar 

  80. G. Ogiya and M. Mori, Astrophys. J. 736, 2 (2011).

    Article  ADS  Google Scholar 

  81. F. Governato, A. Zolotov, A. Pontzen, et al., Mon. Not. R. Astron. Soc. 422, 1231 (2012); arXiv:1202.0554 [astro-ph] (2012).

    Article  ADS  Google Scholar 

  82. S. Ekstrom, G. Meynet, C. Chiappini, et al., Astron. Astrophys. 489, 685 (2008).

    Article  ADS  Google Scholar 

  83. A. Stacy, V. Bromm, and A. Loeb, Mon. Not. R. Astron. Soc. 413, 543 (2011).

    Article  ADS  Google Scholar 

  84. B. E. K. Sugerman, B. Ercolano, M. J. Barlow, et al., Science 313, 196 (2006).

    Article  ADS  Google Scholar 

  85. A. Venkatesan, B. B. Nath, and J. M. Shull, Astrophys. J. 640, 31 (2006).

    Article  ADS  Google Scholar 

  86. N. Smith, J. M. Silverman, A. V. Filippenko, et al., Astron. J. 143, 17 (2012).

    Article  ADS  Google Scholar 

  87. S. Bianchi, R. Schneider, and R. Valiante, ASP Conf. Ser. 414, 65 (2009).

    ADS  Google Scholar 

  88. T. Tsuribe and K. Omukai, Astrophys. J. 642, 61 (2006).

    Article  ADS  Google Scholar 

  89. D. Hollenbach and C. F. McKee, Astrophys. J. Suppl. Ser. 41, 555 (1979).

    Article  ADS  Google Scholar 

  90. B. T. Draine and E. E. Salpeter, Astrophys. J. 231, 77 (1979).

    Article  ADS  Google Scholar 

  91. B. T. Draine, in The Cold Universe: Saas-Fee Advenced Course 32, Ed. by A. W. Blain, F. Combes, B. T. Draine, D. Pfenniger, and Y. Revaz (Springer-Verlag, Berlin, 2004), p. 213.

    Google Scholar 

  92. W. P. S. Meikle, S. Mattila, A. Pastorello, et al., Astrophys. J. 665, 608 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Vasiliev.

Additional information

Original Russian Text © E.O. Vasiliev, E.I. Vorobyov, E.E. Matvienko, A.O. Razoumov, Yu.A. Shchekinov, 2012, published in Astronomicheskii Zhurnal, 2012, Vol. 89, No. 12, pp. 987–1007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasiliev, E.O., Vorobyov, E.I., Matvienko, E.E. et al. Evolution of the first supernovae in protogalaxies: Dynamics of mixing of heavy elements. Astron. Rep. 56, 895–914 (2012). https://doi.org/10.1134/S1063772912120050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772912120050

Keywords

Navigation