Skip to main content
Log in

Nonstoichiometric fluorides—Solid electrolytes for electrochemical devices: A review

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The solid electrolytes with fluorine-ion conductivity that were revealed during the analysis of the phase diagrams of the MF m -RF n systems within the program of search for new multicomponent fluoride crystalline materials carried out at the Shubnikov Institute of Crystallography, Russian Academy of Sciences, are described. The most widespread and promising materials are the nonstoichiometric phases with fluorite (CaF2) and tysonite (LaF3) structures, which are formed in the MF2-RF3 systems (M = Ca, Sr, Ba, Cd, or Pb; R = Sc, Y, or La-Lu). These phases have superionic fluorine conductivity due to the anion sublattice disorder. The ionic conductivity of crystals of both structure types has been studied and the limits of its change with composition and temperature are determined. Nonstoichiometric fluorides are used as solid electrolytes in chemical sensors, fluorine sources, and batteries. The prospects of the use of fluorine-ion conductors in solid-state electrochemical devices, principles of their operation, and the problems of optimization of their composition are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Sobolev, The Rare Earth Trifluorides, Part 1: The High Temperature Chemistry of the Rare Earth Trifluorides (Institute of Crystallography, Moscow, 2000; Institut d’Estudis Catalans, Barcelona, 2000).

    Google Scholar 

  2. V. B. Aleksandrov and L. S. Garashina, Dokl. Akad. Nauk SSSR 189(2), 307 (1969) [Sov. Phys. Dokl. 14, 1040 (1969)].

    Google Scholar 

  3. B. P. Sobolev, The Rare Earth Trifluorides, Part 2: Introduction to Materials Science of Multicomponent Metal Fluoride Crystals (Institute of Crystallography, Moscow, 2001; Institut d’Estudis Catalans, Barcelona, 2001).

    Google Scholar 

  4. M. Faraday, Ann. Physik 107, 247 (1834).

    Google Scholar 

  5. P. P. Fedorov and B. P. Sobolev, J. Less-Common Met. 63(1), 31 (1979).

    Article  Google Scholar 

  6. C. R. A. Catlow, J. D. Comins, F. A. Germano, et al., Phys. Lett. A 71(1), 97 (1979).

    Article  ADS  Google Scholar 

  7. J. A. Archer, A. V. Chadwick, I. R. Jack, and B. Zeqiri, Solid State Ionics 9–10, 505 (1983).

    Article  Google Scholar 

  8. M. T. Hutchings, K. Clausen, M. H. Dickens, et al., J. Phys. C 17(22), 3903.

  9. U. Croatto and M. Bruno, Gazz. Chim. Ital. 78, 95 (1948).

    Google Scholar 

  10. R. W. Ure, J. Chem. Phys. 26(4), 1363 (1957).

    Article  Google Scholar 

  11. L. E. Nagel and M. O’ Keeffe, Fast Ion Transport in Solids, Ed. by W. van Gool (North Holland, Amsterdam, 1973), p. 165.

    Google Scholar 

  12. J. M. Reau, C. Lucat, G. Campet, et al., J. Solid State Chem. 17(1–2), 123 (1976).

    Article  ADS  Google Scholar 

  13. M. Svantner, E. Mariani, P. P. Fedorov, and B. P. Sobolev, Krist. Tech. 14(3), 365 (1979).

    Article  Google Scholar 

  14. A. Sher, R. Solomon, K. Lee, and M. W. Muller, Phys. Rev. 144, 593 (1966).

    Article  ADS  Google Scholar 

  15. M. S. Frant and J. W. Ross, Science 154(3756), 1553 (1966).

    Article  ADS  Google Scholar 

  16. T. Takahashi, H. Iwahara, and T. Ishikawa, J. Electrochem. Soc. 124, 280 (1977).

    Article  Google Scholar 

  17. I. V. Murin, O. V. Glumov, and B. P. Sobolev, Vestn. Leningr. Univ., No. 10, Issue 2, 84 (1980).

  18. A. K. Cheetham, B. E. F. Fender, D. Steele, et al., Solid State Commun. 8(3), 171 (1970).

    Article  Google Scholar 

  19. E. A. Ryzhova, V. N. Molchanov, A. A. Artyukhov, et al., Kristallografiya 49(4), 668 (2004) [Crystallogr. Rep. 49, 591 (2004)].

    Google Scholar 

  20. E. A. Sul’yanova, A. P. Shcherbakov, V. N. Molchanov, et al., Kristallografiya 50(2), 235 (2005) [Crystallogr. Rep. 50, 203 (2005)].

    Google Scholar 

  21. N. I. Sorokin, E. A. Sul’yanova, I. I. Buchinskaya, and B. P. Sobolev, Kristallografiya 50(4), 750 (2005) [Crystallogr. Rep. 50, 695 (2005)].

    Google Scholar 

  22. Yu. D. Tret’yakov, Chemistry of Nonstoichiometric Oxides (Mosk. Gos. Univ., Moscow, 1974) [in Russian].

    Google Scholar 

  23. J. S. Anderson, Problems of Nonstoichiometry, Ed. by A. Rabenau (North Holland, Amsterdam, 1970), p. 355.

    Google Scholar 

  24. B. P. Sobolev, A. M. Golubev, and P. Herrero, Kristallografiya 48(1), 148 (2003) [Crystallogr. Rep. 48, 141 (2003)].

    Google Scholar 

  25. T. Takahashi, H. Iwahara, and T. Ishikawa, J. Electrochem. Soc. 124, 280 (1977).

    Article  Google Scholar 

  26. B. P. Sobolev, E. G. Ippolitov, B. M. Zhigarnovskiĭ, and L. S. Garashina, Izv. Akad. Nauk SSSR, Neorg. Mater. 1(3), 362 (1965).

    Google Scholar 

  27. B. P. Sobolev, Crystallography Reports 47 (Suppl. 1), 63 (2002).

    Article  Google Scholar 

  28. T. M. Turkina, P. P. Fedorov, and B. P. Sobolev, Kristallografiya 31(1), 146 (1986) [Sov. Phys. Crystallogr. 31, 83 (1986)].

    Google Scholar 

  29. B. P. Sobolev, Z. I. Zhmurova, V. V. Karelin, et al., Rost Krist. 16, 58 (1987).

    Google Scholar 

  30. P. P. Fedorov, T. M. Turkina, V. A. Meleshina, and B. P. Sobolev, Proceedings of the Indo-Soviet Symposium on Crystal Growth, New Delhi, 1989, p. 89.

  31. N. I. Sorokin, T. M. Turkina, and B. P. Sobolev, Kristallografiya 37(6), 1566 (1992) [Sov. Phys. Crystallogr. 37, 848 (1992)].

    Google Scholar 

  32. N. I. Sorokin, E. F. Sudakova, E. A. Krivandina, and B. P. Sobolev, Elektrokhimiya 35(2), 239 (1999).

    Google Scholar 

  33. N. I. Sorokin, E. A. Krivandina, Z. I. Zhmurova, et al., Proceedings of the All-Russia Conference “Sensor-2000” (St. Petersburg, 2000), p. 322.

  34. N. I. Sorokin, A. A. Bystrova, and B. P. Sobolev, Proceedings of the II All-Russia Conference “Physicochemical Processes in Condensed State and at Phase Boundaries (FAGRAN-2004)” (Voronezh, 2004), p. 459.

  35. N. I. Sorokin, Elektrokhimiya 40(5), 644 (2004).

    Google Scholar 

  36. N. I. Sorokin, Usp. Khim. 70(9), 901 (2001).

    Google Scholar 

  37. N. I. Sorokin, M. V. Fominykh, A. N. Smirnov, and B. P. Sobolev, Neorg. Mater. 35(7), 894 (1999).

    Google Scholar 

  38. B. P. Sobolev, I. A. Sviridov, V. I. Fadeeva, et al., Kristallografiya 50(3), 536 (2005) [Crystallogr. Rep. 50, 478 (2005)].

    Google Scholar 

  39. J. M. Reau and J. Grannec, Inorganic Solid Fluorides: Chemistry and Physics, Ed. by P. Hagenmuller (Academic, New York, 1985), p. 423.

    Google Scholar 

  40. V. P. Zhukov and V. M. Zaĭnullina, Fiz. Tverd. Tela (St. Petersburg) 40(11), 2019 (1998) [Phys. Solid State 40, 1827 (1998)].

    Google Scholar 

  41. H. D. Wiemhofer, S. Harke, and U. Vohrer, Solid State Ionics 40–41, 433 (1990).

    Article  Google Scholar 

  42. S. N. S. Reddy and R. A. Rapp, J. Electrochem. Soc. 124, 314 (1977).

    Article  Google Scholar 

  43. N. I. Sorokin, Candidate’s Dissertation in Physics and Mathematics (IKAN, Moscow, 1989).

    Google Scholar 

  44. I. V. Murin, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., No. 2, Issue 1, 53 (1984).

  45. J. Schoonman, G. A. Korteweg, and R. W. Bonne, Solid State Commun. 16, 9 (1975).

    Article  Google Scholar 

  46. J. H. Kennedy and R. Miles, J. Electrochem. Soc. 123, 47 (1976).

    Article  Google Scholar 

  47. W. C. Fang and R. A. Rapp, J. Electrochem. Soc. 124, 315 (1977).

    Google Scholar 

  48. R. Benz, Z. Phys. Chem. Neue Folge 95, 25 (1975).

    Google Scholar 

  49. I. V. Murin, O. V. Glumov, and D. V. Samusik, Proceedings of the IX All-Union Conference on the Physico-and Electrochemistry of Ionic Melts and Solid Electrolytes, Sverdlovsk, 1987, vol. 3, p. 103.

  50. N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, et al., Kristallografiya 41(2), 310 (1996) [Crystallogr. Rep. 41, 292 (1996)].

    Google Scholar 

  51. N. I. Sorokin, M. V. Fominykh, V. I. Fistul’, et al., Fiz. Tverd. Tela (St. Petersburg) 41(4), 638 (1999) [Phys. Solid State 41, 573 (1999)].

    Google Scholar 

  52. V. N. Bezmel’nitsyn and I. S. Begichev, Proceedings of the IX All-Union Symposium on the Chemistry of Inorganic Fluorides, Cherepovets, 1990, p. 58.

  53. A. Roos and J. Schoonman, Solid State Ionics 13, 205 (1984).

    Article  Google Scholar 

  54. T. Takahashi, H. Iwahara, and T. Ishikawa, J. Electrochem. Soc. 124(2), 280 (1977).

    Article  Google Scholar 

  55. B. P. Sobolev, Multicomponent Crystals Based on Heavy Metal Fluorides for Radiation Detectors (Institut d’Estudis Catalans, Barcelona, 1994).

    Google Scholar 

  56. N. I. Sorokin, E. A. Krivandina, B. P. Sobolev, and V. G. Vasil’chenko, Proceedings of the IX National Conference on Crystal Growth, Moscow, 2000, p. 273.

  57. M. G. Izosimova, A. I. Livshits, V. M. Buznik, et al., Fiz. Tverd. Tela (Leningrad) 28(9), 2644 (1986) [Sov. Phys. Solid State 28, 1482 (1986)].

    Google Scholar 

  58. A. F. Privalov, H. M. Vieth, and I. V. Murin, J. Phys. Chem. Solids 50(4), 395 (1989).

    Article  Google Scholar 

  59. T. N. Rezukhina, T. F. Sysoeva, B. S. Pokaraev, and V. V. Slavinskiĭ, Proceedings of the III All-Union Symposium on the Chemistry of Inorganic Fluorides, Odessa, 1972, p. 42.

  60. V. A. Levitskii, J. Solid State Chem. 25(1), 9 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  61. Yu. Ya. Skolis, V. M. Vintonyak, F. M. Korytnaya, et al., Proceedings of the VII All-Union Symposium on the Chemistry of Inorganic Fluorides, Dushanbe, 1984, p. 294.

  62. C. B. Alcock and B. Li, J. Am. Ceram. Soc. 73, 1176 (1990).

    Article  Google Scholar 

  63. A. M. Azad, O. M. Sreedharan, and K. T. Jacob, J. Mater. Sci. 26, 3374 (1991).

    Article  Google Scholar 

  64. D. Sichen, Metall. Trans. B 21, 313 (1990).

    Article  Google Scholar 

  65. K. T. Jacob, K. P. Abraham, and S. Ramachandran, Metall. Trans. B 21, 521 (1990).

    Article  Google Scholar 

  66. W. L. Worrell, Solid State Ionics 3–4, 559 (1981).

    Article  Google Scholar 

  67. K. T. Jacob, M. Iwase, and Y. Waseda, Solid State Ionics 23(4), 245 (1987).

    Article  Google Scholar 

  68. C. B. Alcock and B. Li, Solid State Ionics 39, 245 (1990).

    Article  Google Scholar 

  69. S. Raghavan, J. Appl. Electrochem. 21, 837 (1991).

    Article  Google Scholar 

  70. R. Ya. Zakirov, T. M. Kuznetsova, and A.A. Timakov, Proceedings of the IX All-Union Symposium on the Chemistry of Inorganic Fluorides, Cherepovets, 1990, p. 135.

  71. V. N. Bezmel’nitsyn and R. Ya. Zakirov, Proceedings of the X Symposium on the Chemistry of Inorganic Fluorides, Moscow, 1998, p. 135.

  72. J. H. Kennedy and J. C. Hunter, J. Electrochem. Soc. 123, 10 (1976).

    Article  Google Scholar 

  73. J. M. Reau and J. Portier, Solid Electrolytes, Ed. by P. Hagenmuller and W. van Gool (Academic, New York, 1978), p. 313.

    Google Scholar 

  74. R. N. Zakirov and A. S. Marinin, Proceedings of the IX All-Union Symposium on the Chemistry of Inorganic Fluorides, Cherepovets, 1990, p. 136; ibid, p. 137; ibid, p. 138.

  75. I. Kosacki, Appl. Phys. A 49, 413 (1989).

    Article  ADS  Google Scholar 

  76. I. V. Murin, O. V. Glumov, and I. I. Kozhina, Vestn. Leningr. Univ., No. 22, Issue 4, 87 (1980).

  77. J. Schoonman and A. Wolfert, Solid State Ionics 3–4, 373 (1981).

    Article  Google Scholar 

  78. B. S. La Roy, A. C. Lilly, and C. O. Tiller, J. Electrochem. Soc. 120(12), 1668 (1973).

    Article  Google Scholar 

  79. I. V. Murin, Doctoral Dissertation (Tech.) (LGU, Leningrad, 1984).

  80. P. Hagenmuller, J. M. Reau, C. Lucat, et al., Solid State Ionics 3–4, 341 (1981).

    Article  Google Scholar 

  81. V. N. Bezmel’nitsyn and R. Ya. Zakirov, Proceedings of the X Symposium on the Chemistry of Inorganic Fluorides, Moscow, 1998, p. 14.

  82. A. A. Potanin, Zh. Vseross. Khim. O-va im. D. I. Mendeleeva 45(5–6), 58 (2001).

    Google Scholar 

  83. V. N. Bezmelnitsyn, S. V. Krasulin, I. K. Zacharchenko, and B. B. Chaivanov, J. Fluorine Chem. 54(1–3), 335 (1991).

    Google Scholar 

  84. N. I. Stenina, N. S. Lapshanova, and V. B. Shevtsov, Proceedings of the III All-Union Symposium on the Chemistry of Inorganic Fluorides, Odessa, 1972, p. 158.

  85. T. A. Fjeldly and K. Nady, J. Electrochem. Soc. 120, 1673 (1973).

    Article  Google Scholar 

  86. B. S. Smolyakov and V. V. Kokovkin, Proceedings of the VI All-Union Symposium on the Chemistry of Inorganic Fluorides, Novosibirsk, 1981, p. 230.

  87. B. Holmberg and K. Jarring, J. Electroanal. Chem. 146, 447 (1983).

    Article  Google Scholar 

  88. J. Szeponik and W. Moritz, Sens. Actuators B 2, 243 (1990).

    Article  Google Scholar 

  89. X. D. Wang, W. Shen, R. W. Cattrall, et al., Aust. J. Chem. 49, 897 (1996).

    Google Scholar 

  90. M. Fouskaki, S. Sotiropoulou, M. Koci, and N. A. Chaniotakis, Anal. Chim. Acta 478(1), 77 (2003).

    Article  Google Scholar 

  91. T. A. Fjeldly and K. Nady, J. Electrochem. Soc. 127(6), 1299 (1980).

    Article  Google Scholar 

  92. J. W. Bixler and L. S. Solomon, Anal. Chem. 56, 3004 (1984).

    Article  Google Scholar 

  93. J. Komljenovic, S. Krka, and N. Radic, Anal. Chem. 58, 2893 (1986).

    Article  Google Scholar 

  94. S. A. Kot, M. S. Turaeva, O. V. Glumov, and I. V. Murin, Proceedings of the All-Russia Conference “Sensor-2000” (St. Petersburg, 2000), p. 115.

  95. M. Bralic, N. Radic, S. Brinic, and E. Generalic, Talanta 55, 581 (2001).

    Article  Google Scholar 

  96. M. S. Turaeva, O. O. Lyalin, and V. L. Vasilevskiĭ, Elektrokhimiya 28(10), 1505 (1992).

    Google Scholar 

  97. M. S. Turaeva, I. A. Pegova, and V. L. Vasilevskiĭ, Electrokhimiya 32(4), 491 (1996).

    Google Scholar 

  98. S. A. Kot, O. V. Glumov, I. V. Murin, and M. S. Turaeva, Proceedings of the International Conference “Glasses and Solid Electrolytes” (St. Petersburg, 1999) p. 51.

  99. I. V. Murin, O. V. Glumov, D. B. Samusik, et al., Proceedings of the II All-Union Conference “Methods and Tools for Monitoring Atmospheric Contaminations and Commercial Exhausts and Their Application” (Leningrad, 1988), p. 228.

  100. I. V. Murin, O. V. Glumov, and D. V. Samusik, Zh. prikl. Khim. 64(10), 2171 (1991).

    Google Scholar 

  101. A. A. Ennan, A. B. Tonkonogiĭ, V. N. Arabadzhi, et al., Proceedings of the VII All-Union Symposium on the Chemistry of Inorganic Fluorides, Dushanbe, 1984, p. 354.

  102. A. N. Alĭnikov, N. N. Aleĭnikov, N. N. Vershinin, and Yu. I. Malov, Proceedings of the IX All-Union Symposium on the Chemistry of Inorganic Fluorides, Cherepovets, 1990, p. 31.

  103. D. Jakes, J. Kaplan, V. Trnovcova, and B. P. Sobolev, Proceedings of the III Asian Conference on Solid State Ionics (Varanasi, India, 1992), p. 47.

    Google Scholar 

  104. A. I. Obolenskiĭ, E. F. Sudakova, and D. N. Chernyshev, Proceedings of the All-Russia Conference “Sensor-2000” (St. Petersburg, 2000), p. 122.

  105. A. I. Buturlin, N. A. Evseev, and G. B. Chakhunashvili, Élektron. Promyshlennost’, No. 9, 31 (1991).

  106. A. A. Vasil’ev, W. Moritz, V. I. Filippov, et al., Proceedings of the X Symposium on the Chemistry of Inorganic Fluorides, Moscow, 1998, p. 28.

  107. A. A. Vasil’ev, W. Moritz, V. V. Malyshev, et al., Proceedings of the all-Russia Conference “Functional Materials and Structures for Sensor Devices” (Moscow, 1999), p. 32

  108. A. Vasiliev and W. Moritz, Sens. Actuators B 49, 133 (1998).

    Article  Google Scholar 

  109. W. Moritz, L. Bartholomaus, U. Roth, et al., Anal. Chim. Acta 393, 49 (1999).

    Article  Google Scholar 

  110. W. Moritz, V. Filippov, A. Vasiliev, et al., J. Fluorine Chem. 93, 61 (1999).

    Article  Google Scholar 

  111. L. Bartholomaus and W. Moritz, Solid State Ionics 132, 31 (2000).

    Article  Google Scholar 

  112. M. Gauthier, A. Belanger, Y. Meas, and M. Kleitz, Solid Electrolytes, Ed. by P. Hagenmuller and W. van Gool (Academic, New York, 1978), p. 498.

    Google Scholar 

  113. C. B. Alcock, B. Li, J. W. Fergus, and L. Wang, Solid State Ionics 53–56, 39 (1992).

    Article  Google Scholar 

  114. J. H. Lee and D. D. Lee, Sens. Actuators B 46(3), 169 (1998).

    Article  Google Scholar 

  115. E. Siebert, J. Fouletier, and M. Kleitz, J. Electrochem. Soc. 134, 1573 (1987).

    Article  Google Scholar 

  116. J. Salardenne, F. Labidi, and D. Birot, Solid State Ionics 28, 1648 (1988).

    Article  Google Scholar 

  117. M. Kleitz and E. Siebert, Chemical Sensor Technology, Ed. by T. Seiyama (Elsevier, Amsterdam, 1989), Vol. 2, p. 151.

    Google Scholar 

  118. T. Eguchi and J. Kuwano, Mater. Res. Bull. 30, 1351 (1995).

    Article  Google Scholar 

  119. N. N. Vershinin, N. N. Aleĭnikov, and A. D. Kunchevich, Dokl. Akad. Nauk 341(4), 466 (1995) [Phys. Dokl. 40, 159 (1995)].

    Google Scholar 

  120. N. Yamazoe, J. Hisamoto, N. Miura, et al., Sens. Actuators B 12(4), 415 (1987).

    Article  Google Scholar 

  121. N. Miura, J. Hisamoto, N. Yamazoe, et al., Sens. Actuators B 16, 301 (1989).

    Article  Google Scholar 

  122. M. Vijayakumar, S. Selvasekarapandian, T. Gnanasekaran, et al., Appl. Surf. Sci. 222(1–4), 125 (2004).

    Article  ADS  Google Scholar 

  123. S. Krause, W. Moritz, and I. Grohmann, Sens. Actuators B 18–19, 148 (1994).

    Article  Google Scholar 

  124. W. B. Mattingly and R. Raj, Solid State Ionics 75, 117 (1995).

    Article  Google Scholar 

  125. X. Na, W. Niu, H. Li, and J. Xie, Sens. Actuators B 87(2), 222 (2002).

    Article  Google Scholar 

  126. W. Moritz, S. Krause, U. Roth, et al., Anal. Chim. Acta 437(2), 183 (2001).

    Article  Google Scholar 

  127. J. Kuwano, A. Wakagi, and M. Kato, Sens. Actuators B 14, 608 (1993).

    Article  Google Scholar 

  128. A. Wakagi, J. Kuwano, M. Kato, and H. Hanamoto, Solid State Ionics 70–71, 601 (1994).

    Article  Google Scholar 

  129. J. Eguchi, S. Suda, H. Amasaki, et al., Solid State Ionics 121(1–4), 235 (1999).

    Article  Google Scholar 

  130. J. Eguchi, S. Suda, J. Kuwano, and Y. Saito, Sens. Actuators B 66, 101 (2000).

    Article  Google Scholar 

  131. M. Taniguchi, M. Wakihara, T. Uchida, et al., J. Electrochem. Soc. 135(1), 217 (1988).

    Article  Google Scholar 

  132. K. T. Jacob and T. Mathews, High Conductivity Solid Ionic Conductors: Recent Trends and Applications, Ed. by T. Takahashi (World Scientific, Singapore, 1989), p. 540.

    Google Scholar 

  133. C. B. Alcock and B. Li, Solid State Ionics 39, 245 (1990).

    Article  Google Scholar 

  134. C. B. Alcock, B. Li, and L. Wang, High Temp.-High Pressures 22, 449 (1990).

    Google Scholar 

  135. C. B. Alcock, B. Li, J. W. Fergus, and L. Wang, Solid State Ionics 53–56, Part 1, 39 (1992).

    Article  Google Scholar 

  136. N. Matayoshi, N. Miura, and N. Yamazoe, Solid State Ionics 40–41, 440 (1990).

    Article  Google Scholar 

  137. M. Madou, G. S. Gaisford, and A. Sher, Proceedings of the II International Meeting on Chemical Sensors, Bordeaux, France, 1986), p. 376.

  138. J. W. Fergus, Sens. Actuators B 42, 119 (1997).

    Article  Google Scholar 

  139. V. V. Ostropikov and É. G. Rakov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 32(8), 3 (1989).

    Google Scholar 

  140. V. N. Bezmelnitsyn, J. Fluorine Chem. 58, 269 (1992).

    Article  Google Scholar 

  141. V. N. Bezmelnitsyn, A. V. Bezmelnitsyn, and A. A. Kolmakov, J. Fluorine Chem. 77, 9 (1996).

    Article  Google Scholar 

  142. N. I. Sorokin, Elektrokhimiya 42(7), 828 (2006).

    Google Scholar 

  143. A. K. Ivanov-Shitz, in Electrode Processes of Solid-Electrolyte Systems, Ed. by M. V. Perfil’ev (IÉ UrO AN SSSR, Sverdlovsk, 1991) [in Russian].

    Google Scholar 

  144. N. I. Sorokin and B. P. Sobolev, Kristallografiya 39(1), 114 (1994) [Crystallogr. Rep. 39, 101 (1994)].

    Google Scholar 

  145. N. I. Sorokin, E. A. Krivandina, Z. I. Zhmurova, et al., Kristallografiya 45(4), 759 (2000) [Crystallogr. Rep. 45, 695 (2000)].

    Google Scholar 

  146. N. I. Sorokin, I. I. Buchinskaya, and B. P. Sobolev, Zh. Neorg. Khim. 43(11), 1773 (1998).

    Google Scholar 

  147. P. P. Fedorov and B. P. Sobolev, Zh. Neorg. Khim. 24(4), 1038 (1979).

    Google Scholar 

  148. A. K. Ivanov-Shitz, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Solid State Ionics 31, 253 (1989).

    Article  Google Scholar 

  149. A. K. Ivanov-Shitz, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Solid State Ionics 31, 269 (1989).

    Article  Google Scholar 

  150. A. I. Ivanov-Shitz, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Solid State Ionics 37, 125 (1990).

    Article  Google Scholar 

  151. N. I. Sorokin, B. P. Sobolev, and M. Breiter, Élektrokhimiya 38(5), 579 (2002).

    Google Scholar 

  152. N. I. Sorokin, B. P. Sobolev, and M. Breiter, Fiz. Tverd. Tela (St. Petersburg) 44(8), 1506 (2002) [Phys. Solid State 44, 1579 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sorokin.

Additional information

Original Russian Text © N.I. Sorokin, B.P. Sobolev, 2007, published in Kristallografiya, 2007, Vol. 52, No. 5, pp. 870–892.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokin, N.I., Sobolev, B.P. Nonstoichiometric fluorides—Solid electrolytes for electrochemical devices: A review. Crystallogr. Rep. 52, 842–863 (2007). https://doi.org/10.1134/S1063774507050148

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774507050148

PACS numbers

Navigation