Skip to main content
Log in

Invar effect in n-Nb2O5, αht-Nb2O5, and L-Nb2O5

  • Lattice Dynamics and Phase Transitions
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

An X-ray diffraction analysis of two commercial sets of niobium pentaoxide (Nb2O5) of Nbo-Pt grade has been performed. Each set reveals the coexistence of three modifications: n-Nb2O5, αht-Nb2O5, and L-Nb2O5. Anomalous behavior in the structural characteristics, with the occurrence of plateaus upon heating (the invar effect), is established for each phase. It is suggested that the coincidence of the temperature ranges with constant unit-cell parameters in Nb2O5 and complex Nb-containing oxides indicates the unified nature of the invar effect, which is related to the defect state of objects under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Reznichenko, L. A. Shilkina, O. N. Razumovskaya, et al., Kristallografiya 51(1), 95 (2006) [Crystallogr. Rep. 51, 87 (2006)].

    ADS  Google Scholar 

  2. L. A. Reznichenko, O. N. Razumovskaya, L. A. Shilkina, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 24(10), 1708 (1988).

    Google Scholar 

  3. L. A. Reznichenko, O. N. Razumovskaya, V. D. Komarov, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 26(10), 2184 (1990).

    Google Scholar 

  4. L. A. Reznichenko, T. V. Donskova, O. N. Razumovskaya, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 26(10), 2190 (1990).

    Google Scholar 

  5. L. A. Reznichenko, O. N. Razumovskaya, and L. S. Ivanova, Izv. SKNTs VSh, Ser. Estestv. Nauki, No. 2, 92 (1991).

  6. L. A. Reznichenko, O. A. Zhelnova, L. S. Ivanova, et al., Neorg. Mater. 29(6), 862 (1993).

    Google Scholar 

  7. L. A. Reznichenko, O. N. Razumovskaya, L. S. Ivanova, and L. A. Shilkina, Neorg. Mater. 29, 1004 (1993).

    Google Scholar 

  8. M. I. Kovalenko, L. A. Reznichenko, O. N. Razumovskaya, et al., Pis’ma Zh. Tekh. Fiz. 26(23), 30 (2000).

    Google Scholar 

  9. M. I. Kovalenko, L. A. Reznichenko, O. N. Razumovskaya, and S. O. Kramarov, Pis’ma Zh. Tekh. Fiz. 26(26), 1 (2000).

    Google Scholar 

  10. E. M. Kuznetsova, L. A. Reznichenko, O. N. Razumovskaya, and L. A. Shilkina, Pis’ma Zh. Tekh. Fiz. 27(5), 36 (2001).

    Google Scholar 

  11. V. V. Titov, S. V. Titov, and L. A. Reznichenko, Fizi. Mezomekh. Spets. Vyp. Part 1, 275 (2004).

    Google Scholar 

  12. L. A. Reznichenko, Extended Abstract of Doctoral Dissertation in Mathematical Physics (RGU, Rostov-on-Don, 2002).

    Google Scholar 

  13. C. N. R. Rao and J. Gopalakrishnan, New Direction in Solid State Chemistry (Cambridge Univ. Press, Cambridge, 1986; Nauka, Novosibirsk, 1990).

    Google Scholar 

  14. L. K. Frevel and H. W. Rin, Anal. Chem. 27, 1329 (1955).

    Article  Google Scholar 

  15. F. Holtzberg, A. Reisman, M. Berry, and M. Berkenblit, J. Am. Chem. Soc. 79, 2039 (1957).

    Article  Google Scholar 

  16. N. Terao, Jpn. J. Appl. Phys. 2, 156 (1963).

    Article  ADS  Google Scholar 

  17. N. Terao, Jpn. J. Appl. Phys. 4, 8 (1965).

    Article  ADS  Google Scholar 

  18. G. C. Vezzoli, Phys. Rev. B 26(7), 3954 (1982).

    Article  ADS  Google Scholar 

  19. H. Schafer, F. Schulte, and R. Gruehn, Angew. Chem. 76, 536 (1964).

    Article  Google Scholar 

  20. H. Schafer, R. Gruehn, and F. Schulte, Angew. Chem. Internat. Edit. 5(1), 40 (1966).

    Article  Google Scholar 

  21. F. Schulte, Thesis Universitat Munster (1962).

  22. M. W. Shafer and R. Roy, Z. Kristallogr. Kristallogeometr., Kristallphyzik, Kristallchem. 110, 241 (1958).

    Google Scholar 

  23. G. Brauer, Z. Anorg. Allg. Chem. 248(1), 1 (1941).

    Article  Google Scholar 

  24. H. Nowotny, F. Benesovsky, E. Rudy, and A. Wittmann, Mh. Chem. 91, 975 (1960).

    Google Scholar 

  25. I. P. Zibrov, V. P. Filonenko, P.-E. Werner, et al., J. Solid State Chem. 141, 205 (1998).

    Article  ADS  Google Scholar 

  26. W. T. Holser, Acta Crystallogr. 9, 196 (1956).

    Article  Google Scholar 

  27. O. Kubaschewski and B. E. Hopkins, J. Less-Common Met. 2, 172 (1960).

    Article  Google Scholar 

  28. R. A. Zwinchuk, Sov. Phys. Crystallogr. 3, 750 (1959).

    Google Scholar 

  29. F. Laves, W. Petter, and H. Wulf, Naturwissenschaften 51, 633 (1964).

    Article  ADS  Google Scholar 

  30. J. Waring, R. Roth, and H. Parker, J. Res. Nat. Bur. Stand. A 77, 705 (1973).

    Google Scholar 

  31. F. Laves, R. Moser, and W. Petter, Naturwissenschaften 51, 356 (1964).

    Article  ADS  Google Scholar 

  32. R. Moser, Schweiz. Min. Petrog. Mitt. 45, 35 (1965).

    Google Scholar 

  33. W. Petter and F. Laves, Naturwissenschaften 52, 617 (1965).

    Article  Google Scholar 

  34. K. Kato, Acta Crystallogr. B 32, 764 (1976).

    Article  Google Scholar 

  35. C. Wang, Q. Su, F. Liu, et al., Nanostruct. Mater. 8(2), 163 (1997).

    Article  Google Scholar 

  36. S. Tamura, et al., Z. Anorg. Allg. Chem. 410, 313 (1974).

    Article  Google Scholar 

  37. A. Magneli and S. Lagergren, A.S.T.M. Index-Card 5-0379/80 (Univ. of Uppsala., Sweden, Private Communication).

  38. R. Roth, J. Res. N.B.S. 62, 27 (1959).

    Google Scholar 

  39. H. McMurdie, M. Morris, E. Evans, et al., Powder Diffraction 1, 342 (1986).

    Google Scholar 

  40. B. M. Gatehouse and A. D. Wadsley, Acta Crystallogr. 17, 1545 (1964).

    Article  Google Scholar 

  41. R. Norin and A. Magnelli, Naturwissenschaften 47, 354 (1960).

    Article  ADS  Google Scholar 

  42. J. Roberson and R. Rapp, J. Phys. Chem. Solids 30, 1119 (1969).

    Article  ADS  Google Scholar 

  43. A. Reisman and F. Holtzberg, J. Am. Chem. Soc. 81, 3182 (1959).

    Article  Google Scholar 

  44. V. P. Filonenko and I. P. Zibrov, Inorg. Mater. 37(9), 953 (2001).

    Article  Google Scholar 

  45. M. Kikuchi, K. Kusaba, B. Bannai, et al., Jpn. J. Appl. Phys. 24, 1600 (1985).

    Article  ADS  Google Scholar 

  46. R. Gruehn, J. Less-Common Met. 11, 119 (1966).

    Article  Google Scholar 

  47. D. Grier and G. McCorthy, ICDD Grant-in-Aid (North Dakota Staty Univ., Forgo, North Dakota, 1991).

    Google Scholar 

  48. S. Andersson, Acta Chem. Scand. 21(7), 1777 (1967).

    Article  Google Scholar 

  49. R. Norin and Nolander, Acta Chem. Scand. 25, 741 (1971).

    Article  Google Scholar 

  50. S. Tomura, et al., J. Mater. Sci. 7, 298 (1972).

    Article  ADS  Google Scholar 

  51. T. Mayer-Uhme and H. Langbein, Thermochim. Acta 447(2), 178 (2006).

    Article  Google Scholar 

  52. J. Jin-Mirn and E. W. Israel, Chem. Mater. 3, 100 (1991).

    Article  Google Scholar 

  53. N. Kumagai, K. Tanno, T. Nakajima, and N. Watanabe, Electron. Acta 28(1), 17 (1983).

    Article  Google Scholar 

  54. G. C. Serghion, R. R. Winters, and W. S. Hammack, Phys. Rev. Lett. 68, 3311 (1992).

    Article  ADS  Google Scholar 

  55. J. G. Weissman, E. I. Ko, and P. Wynblatt, J. Catalys. 108, 383 (1987).

    Article  Google Scholar 

  56. S. Iijima, Acta Crystallogr. A 29, 18 (1973).

    Article  ADS  Google Scholar 

  57. O. F. Schilling and L. Ghivelder, J. Phys.: Condens. Matter 12, 2825 (2000).

    Article  ADS  Google Scholar 

  58. A. Lappas, J. E. L. Waldron, M. A. Green, and K. Prassides, Phys. Rev. B 65, 134405 (1) (2002).

  59. L. A. Reznichenko, L. A. Shilkina, E. S. Gagarina, et al., Kristallografiya 48(3), 493 (2003) [Crystallogr. Rep. 48, 377 (2003)].

    ADS  Google Scholar 

  60. M. Ahtee, A. M. Glazer, and H. D. Megaw, Philos. Mag. 26(8), 995 (1972).

    Article  ADS  Google Scholar 

  61. A. Guinier, Theorie et technique de la radiocrystallographie (Dunod, Paris, 1956; Fizmatgiz, Moscow, 1961).

    Google Scholar 

  62. M. Wells and H. D. Megaw, Proc. Phys. Soc., London 78, 1258 (1961).

    Article  Google Scholar 

  63. L. A. Reznichenko, L. A. Shilkina, E. S. Gagarina, et al., Kristallografiya 49(5), 909 (2004) [Crystallogr. Rep. 49, 820 (2004)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Reznichenko.

Additional information

Original Russian Text © L.A. Reznichenko, V.V. Akhnazarova, L.A. Shilkina, O.N. Razumovskaya, S.I. Dudkina, 2009, published in Kristallografiya, 2009, Vol. 54, No. 3, pp. 517–526.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reznichenko, L.A., Akhnazarova, V.V., Shilkina, L.A. et al. Invar effect in n-Nb2O5, αht-Nb2O5, and L-Nb2O5 . Crystallogr. Rep. 54, 483–491 (2009). https://doi.org/10.1134/S1063774509030183

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774509030183

PACS numbers

Navigation