Skip to main content
Log in

Structural and physical properties of boron doped ZnO films prepared by chemical spray pyrolysis method

  • Surface and Thin Films
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

In this work, ZnO and boron doped ZnO (ZnO:B) thin films were produced by chemical spray pyrolysis method. ZnO and ZnO:B films were obtained onto glass substrates at 450°C by spray pyrolysis method and the physical properties of those films were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectrometer (UV) and four probe technique. XRD measurements show that all films have hexagonal wurtzite structure and all films grow preferentially along (002) direction. Morphologies of the films were examined by using a scanning electron microscopy and it was observed that almost all films were quite intense with a regular structure. Optical measurements showed that the band gap energies of the films increased with boron concentrations. The resistances of the B-doped ZnO films were measured by four probe method and resistances of films initially decreased to its minimum 1 at% boron doping and then it increased again with increasing B concentration. It was also observed that that boron doping increased the activation energies of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).

    Article  ADS  Google Scholar 

  2. T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, and T. Mise, Sol. Energy 77, 739 (2004).

    Article  ADS  Google Scholar 

  3. S. Y. Lee, E. S. Shim, H. S. Kang, S. S. Pang, and J. S. Kang, Thin Solid Films 437, 31 (2005).

    Article  ADS  Google Scholar 

  4. R. Könenkamp, R. C. Word, and C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004).

    Article  ADS  Google Scholar 

  5. S. T. Mckinstry, and P. Muralt, J. Electroceram. 12, 7 (2004).

    Article  Google Scholar 

  6. Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang, and Y. Zhang, Adv. Funct. Mater. 14, 943 (2004).

    Article  Google Scholar 

  7. M. S. Wagh, L. A. Patil, T. Seth, and D. P. Amalnerkar, Mater. Chem. Phys. 84, 228 (2004).

    Article  Google Scholar 

  8. Y. Ushio, M. Miyayama, and H. Yanagida, Sensor Actuat. B 17, 221 (1994).

    Article  Google Scholar 

  9. H. Harima, J. Phys.: Condens. Matter 16, S5653 (2004).

    ADS  Google Scholar 

  10. S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton, and T. Steiner, Semicond. Sci. Technol. 19, R59 (2004).

    Article  ADS  Google Scholar 

  11. I. Kim, K.-S. Lee, T. Seong Lee, J.-h. Jeong, B.-ki Cheong, Y.-J. Baik, and W. M. Kim, J. Appl. Phys. 100, 063701 (2006)

    Article  ADS  Google Scholar 

  12. S. Kerli, U. Alver, A. Tanriverdi, and B. Avar, Protection Met. Phys. Chem. Surf. 50 (6), 3 (2014).

    Google Scholar 

  13. S. Ilican, F. Yakuphanoglu, M. Caglar, and Y. Caglar, J. Alloys Compd. 509 (17), 3 (2011).

    Article  Google Scholar 

  14. Zh. Zhang, Ch. Bao, W. Yao, Sh. Ma, L. Zhang, and Sh. Hou, Superlattices Microstruct. 49 (6), 3 (2011).

    Article  Google Scholar 

  15. Y.-S. Kim and W.-P. Tai, Appl. Surf. Sci. 253 (11), 3 (2007).

    Article  Google Scholar 

  16. H. Nian, S. H. Hahn, K.-K. Kooc, E. W. Shina, and E. J. Kima, Mater. Lett. 63 (26), 3 (2009).

    Article  Google Scholar 

  17. B. N. Pawar, S. R. Jadkar, and M. G. Takwale, J. Phys. Chem. Solids 66, 1779 (2005).

    Article  ADS  Google Scholar 

  18. B. J. Lokhande, P. S. Patil, and M. D. Uplane, Physica B 302–303, 59 (2001).

    Article  Google Scholar 

  19. M. Krunks, T. Dedova, and I. Oja Açik, Thin Solid Films 515, 1157 (2006).

    Article  ADS  Google Scholar 

  20. M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglu, J. Alloys Compd. 509 (6), 3 (2011).

    Article  Google Scholar 

  21. E. Fathi, Y. Vygranenko, M. Vieira, and A. Sazonov, Appl. Surf. Sci. 257 (21), 3 (2011).

    Article  Google Scholar 

  22. G. ho Kim, J. By analyzing, Y. Kim, S. K. Rout, and S. Ihl Woo, Appl Phys A 97, 821 (2009).

    Article  ADS  Google Scholar 

  23. P. M. Ratheesh Kumar, Doctoral Dissertation (Cochin University of Science and Technology, Cochin, India, 2007), p. 248.

    Google Scholar 

  24. A. V. Patil, C. G. Dighavkar, S. K. Sonawane, S. J. Patil, and R. Y. Borse, J. Optoelectron. Biomed. Mater. 1 (2), 3 (2009).

    Google Scholar 

  25. R. Kumar and N. Khare, Thin Solid films, 516, 1302 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Kerli or U. Alver.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerli, S., Alver, U., Tanriverdi, A. et al. Structural and physical properties of boron doped ZnO films prepared by chemical spray pyrolysis method. Crystallogr. Rep. 60, 946–950 (2015). https://doi.org/10.1134/S1063774515060139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774515060139

Keywords

Navigation