Skip to main content
Log in

Fluorine-ion conductivity of different technological forms of solid electrolytes R 1–y M y F3–y (LaF3 Type ) (M = Ca, Sr, Ba; R Are Rare Earth Elements)

  • Crystal Growth
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

We have investigated the conductivity of some representatives of different technological forms of fluoride-conducting solid electrolytes R 1–y M y F3–y (M = Ca, Sr, Ba; R are rare earth elements) with an LaF3 structure: single crystals, cold- and hot-pressing ceramics based on a charge prepared in different ways (mechanochemical synthesis, solid-phase synthesis, and fragmentation of single crystals), polycrystalline alloys, etc. It is shown (by impedance spectroscopy), that different technological forms of identical chemical composition (R, M, y) exhibit different electrical characteristics. The maximum conductivity is observed for the single-crystal form of R 1–y M y F3–y tysonite phases, which provides (in contrast to other technological forms) the formation of true volume ion-conducting characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 52 (5), 842 (2007).

    Article  ADS  Google Scholar 

  2. N. I. Sorokin, Elektrokhimiya 40 (5), 644 (2004).

    Google Scholar 

  3. N. I. Sorokin, Usp. Khim. 70 (9), 901 (2001).

    Article  Google Scholar 

  4. M. Frant and J. Ross, Science 154 (3736), 1553 (1966).

    Article  ADS  Google Scholar 

  5. N. I. Sorokin, E. F. Sudakova, E. A. Krivandina, and B. P. Sobolev, Elektrokhimiya 35 (2), 246 (1999).

    Google Scholar 

  6. N. I. Sorokin, E. A. Krivandina, Z. I. Zhmurova, et al., Proc. All-Russia Conf. “Sensor 2000: Sensors and Microsystems,” St. Petersburg, 21–23 June, 2000, p. 322.

    Google Scholar 

  7. E. F. Sudakova, E. A. Oksengoit-Gruzman, V. P. Topchaev, et al., Patent RF No. RU2094791 (27 October 1997).

    Google Scholar 

  8. E. F. Sudakova, E. A. Oksengoit-Gruzman, V. P. Topchaev, et al., Patent RF no. RU2094793 (27 October 1997).

    Google Scholar 

  9. A. A. Potanin, Zh. Ross. Khim. O-va im. D. I. Mendeleeva 45 (5–6), 58 (2001).

    Google Scholar 

  10. M. Anji Reddy and M. Fichtner, J. Mater. Chem. 21, 17059 (2011).

    Article  Google Scholar 

  11. B. P. Sobolev, The Rare Earth Trifluorides, Part 2: Introduction to Materials Science of Multicomponent Metal Fluoride Crystals (Institute of Crystallography, Moscow, 2001; Institut d’Estudis Catalans, Barcelona, 2001).

    Google Scholar 

  12. P. P. Fedorov, A. A. Luginina, S. N. Kuznetsov, and V. V. Osiko, J. Fluorine Chem. 132, 1012 (2011).

    Article  Google Scholar 

  13. J. Schoonman, G. Oversluizen, and K. E. D. Wapenaar, Solid State Ionics 1, 211 (1980).

    Article  Google Scholar 

  14. N. I. Sorokin, M. V. Fominykh, A. N. Smirnov, and B. P. Sobolev, Inorg. Mater. 35 (7), 759 (1999).

    Google Scholar 

  15. B. P. Sobolev, I. A. Sviridov, V. I. Fadeeva, et al., Crystallogr. Rep. 53 (5), 868 (2008).

    Article  ADS  Google Scholar 

  16. N. I. Sorokin, N. A. Ivanovskaya, and B. P. Sobolev, Crystallogr. Rep. 59 (2), 248 (2014).

    Article  ADS  Google Scholar 

  17. C. Rongeat, M. Anji Reddy, R. Witter, and M. Fichtner, ACS Appl. Mater. Interfaced 6, 2103 (2014).

    Article  Google Scholar 

  18. A. Duvel, J. Bednarcik, V. Sepelak, and P. Heitjans, J. Phys. Chem. C 118, 7117 (2014).

    Article  Google Scholar 

  19. B. P. Sobolev and N. I. Sorokin, Crystallogr. Rep. 59 (6), 807 (2014).

    Article  ADS  Google Scholar 

  20. B. P. Sobolev, N. I. Sorokin, E. A. Krivandina, and Z. I. Zhmurova, Crystallogr. Rep. 59 (4), 550 (2014).

    Article  ADS  Google Scholar 

  21. N. I. Sorokin, B. P. Sobolev, E. A. Krivandina, and Z. I. Zhmurova, Crystallogr. Rep. 60 (1), 123 (2015).

    Article  ADS  Google Scholar 

  22. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Fiz. Tverd. Tela 25 (6), 1748 (1983).

    Google Scholar 

  23. N. I. Sorokin and B. P. Sobolev, Elektrokhimiya 43 (4), 420 (2007).

    Google Scholar 

  24. N. I. Sorokin and B. P. Sobolev, Phys. Solid State 50 (3), 416 (2008).

    Article  ADS  Google Scholar 

  25. N. I. Sorokin and B. P. Sobolev, Elektrokhimiya 44 (9), 1111 (2008).

    Google Scholar 

  26. E. A. Krivandina, N. I. Sorokin, Z. I. Zhmurova, and B. P. Sobolev, Proc. IX Natl. Conf. on Crystal Growth, Moscow, 16–20 October, 2000, p. 293.

    Google Scholar 

  27. N. I. Sorokin, Z. I. Zhmurova, E. A. Krivandina, and B. P. Sobolev, Crystallogr. Rep. 57 (3), 461 (2012).

    Article  ADS  Google Scholar 

  28. B. P. Sobolev, Crystallogr. Rep. 47 (Suppl. 1), 63 (2002).

    Article  ADS  Google Scholar 

  29. F. K. Volynets, Opt.-Mekh. Prom-st, No. 9, 48 (1973).

    Google Scholar 

  30. N. I. Sorokin, A. Smirnov, P. P. Fedorov, and B. P. Sobolev, Elektrokhimiya 45 (5), 641 (2009).

    Google Scholar 

  31. T. Takahashi, H. Iwahara, and T. Ishikava, J. Electrochem. Soc. 124 (2), 280 (1977).

    Article  Google Scholar 

  32. I. V. Murin, O. V. Glumov, and Yu. V. Amelin, Zh. Prikl. Khim. 53 (4), 1474 (1980).

    Google Scholar 

  33. I. V. Murin, O. V. Glumov, and B. P. Sobolev, Vestn. Leningrad Gos. Univ.: Ser. Fiz. Khim., No. 10, 84 (1980).

    Google Scholar 

  34. A. Roos, F. C. M. van de Pol, and J. Schoonman, Solid State Ionics 13, 191 (1984).

    Article  Google Scholar 

  35. N. I. Sorokin, M. V. Fominykh, V. I. Fistul’, et al., Fiz. Tverd. Tela 41 (4), 638 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sorokin.

Additional information

Original Russian Text © N.I. Sorokin, B.P. Sobolev, 2016, published in Kristallografiya, 2016, Vol. 61, No. 3, pp. 468–474.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, N.I., Sobolev, B.P. Fluorine-ion conductivity of different technological forms of solid electrolytes R 1–y M y F3–y (LaF3 Type ) (M = Ca, Sr, Ba; R Are Rare Earth Elements). Crystallogr. Rep. 61, 499–505 (2016). https://doi.org/10.1134/S1063774516020279

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774516020279

Navigation