Skip to main content
Log in

Use of Full-Profile X-Ray Analysis for Estimation of the Dispersity of the Secondary Alpha Phase in High-Strength Titanium Alloys

  • REAL STRUCTURE OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The VST3331 titanium alloy in three structural states with different dispersities of the secondary α phase of titanium has been investigated by scanning electron microscopy and X-ray diffraction analysis. The possibility of using full-profile analysis of X-ray diffraction patterns for determining the size of titanium secondary α-phase crystallites has been estimated. It is demonstrated that the methods in use yield similar estimates of the average thickness of titanium secondary α-phase plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. W. Hull, Phys. Rev. 18, 88 (1921).

    Article  Google Scholar 

  2. W. G. Burgers and F. M. Jacobs, Cryst. Mater. 94, 299 (1936).

    Google Scholar 

  3. M. K. McQuillan, Phase Transformations in Titanium and Its Alloys (Metallurgiya, Moscow, 1967) [in Russian].

    Google Scholar 

  4. N. J. Petch, J. Iron. Steel Inst. 174, 25 (1953).

    Google Scholar 

  5. E. O. Hall, Proc. Phys. Soc. B 64, 747 (1951).

    Article  ADS  Google Scholar 

  6. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  7. T. G. Langdon, Acta Mater. 61, 7035 (2013).

    Article  Google Scholar 

  8. O. M. Ivasishin, P. E. Markovsky, Y. V. Matviychuk, et al., J. Alloys Compd. 457, 296 (2008).

    Article  Google Scholar 

  9. M. S. Kalienko, A. V. Volkov, V. A. Kropotov, et al., Proc. 12th Int. Conf. “Titanium'2011: Science and Technology,” Beijing, China,2011, p. 1303.

  10. S. K. Kar, A. Ghosh, N. Fulzele, and A. Bhattacharjee, Mater. Charact. 81, 37 (2013).

    Article  Google Scholar 

  11. Z. Du, S. Xiao, L. Xu, et al., Mater. Des. 55, 183 (2014).

    Article  Google Scholar 

  12. P. Scherrer, Nach. Ges. Wiss. Gottingen 26, 98 (1918).

    Google Scholar 

  13. E. J. Mittemeijer and P. Scardi, Diffraction Analysis of the Microstructure of Materials (Springer, Berlin, 2004).

    Book  Google Scholar 

  14. V. Uvarov and I. Popov, Mater. Charact. 85, 111 (2013).

    Article  Google Scholar 

  15. V. Uvarov and I. Popov, Cryst. Eng. Commun. 17, 8300 (2015).

    Article  Google Scholar 

  16. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: Spectrometry, Vol. 4 (Plenum, New York, 1996).

    Book  Google Scholar 

  17. M. N. Matthew, R. A. Witt, and B. W. True, Microsc. Today 13, 44 (2005).

    Google Scholar 

  18. F. Prima, P. Vermaut, G. Texier, et al., Scr. Mater. 54, 645 (2006).

    Article  Google Scholar 

  19. H. Savaloni, M. Gholipour-Shahraki, and M. A. Player, J. Phys. D: Appl. Phys. 39, 2231 (2006).

    Article  ADS  Google Scholar 

  20. T. Ungár, G. Ribárik, L. Balogh, et al., Scr. Mater. 63, 69 (2010).

    Article  Google Scholar 

  21. I. C. Dragomir, D. S. Li, G. A. Castello-Branco, et al., Mater. Charact. 55, 66 (2005).

    Article  Google Scholar 

  22. T. Ungár, M. G. Glavicic, L. Balogh, et al., Mater. Sci. Eng. A 493, 79 (2008).

    Article  Google Scholar 

  23. M. G. Glavicic, A. A. Salem, and S. L. Semiatin, Acta Mater. 52, 647 (2004).

    Article  Google Scholar 

  24. T. H. Simm, P. J. Withers, and J. Q. da Fonseca, Mater. Des. 111, 331 (2016).

    Article  Google Scholar 

  25. J. Ghosh, S. K. Chattopadhayay, A. K. Meikap, et al., J. Alloys Compd. 453, 131 (2008).

    Article  Google Scholar 

  26. TOPAS. V3, General Profile and Structure Analysis Software for Powder Diffraction Data: User’s Manual (Bruker AXS, Karlsruhe, Germany, 2005).

  27. T. Li, M. Ahmed, G. Sha, et al., J. Alloys Compd. 643, 212 (2015).

    Article  Google Scholar 

  28. P. Barriobero-Vila, G. Requena, T. Buslaps, et al., J. Alloys Compd. 626, 330 (2015).

    Article  Google Scholar 

  29. F. W. Chen, G. Xu, X. Y. Zhang, et al., J. Alloys Compd. 702, 352 (2017).

    Article  Google Scholar 

  30. F. Bruneseaux, E. Aeby-Gautier, G. Geandier, et al., Mater. Sci. Eng. A 476, 60 (2008).

    Article  Google Scholar 

  31. B. D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, 1956).

    Google Scholar 

  32. R. Shi, N. Ma, and Y. Wang, Acta Mater. 60, 4172 (2012).

    Article  Google Scholar 

  33. R. Shi and Y. Wang, Acta Mater. 61, 6006 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kalienko.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalienko, M.S., Volkov, A.V. & Zhelnina, A.V. Use of Full-Profile X-Ray Analysis for Estimation of the Dispersity of the Secondary Alpha Phase in High-Strength Titanium Alloys. Crystallogr. Rep. 65, 412–416 (2020). https://doi.org/10.1134/S1063774520020121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520020121

Navigation