Skip to main content
Log in

Some interesting consequences of the maximum entropy production principle

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Two nonequilibrium phase transitions (morphological and hydrodynamic) are analyzed by applying the maximum entropy production principle. Quantitative analysis is for the first time compared with experiment. Nonequilibrium crystallization of ice and laminar-turbulent flow transition in a circular pipe are examined as examples of morphological and hydrodynamic transitions, respectively. For the latter transition, a minimum critical Reynolds number of 1200 is predicted. A discussion of this important and interesting result is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Ozawa, A. Ohmura, R. D. Lorenz, and T. Pujol, Rev. Geophys. 41, 1018 (2003).

    Article  ADS  Google Scholar 

  2. L. M. Martyushev and V. D. Seleznev, Phys. Rep. 426, 1 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Ziegler, An Introduction to Thermomechanics (North-Holland, Amsterdam, 1983).

    MATH  Google Scholar 

  4. J. M. Ziman, Can. J. Phys. 34, 1256 (1956).

    Article  MathSciNet  ADS  Google Scholar 

  5. R. Dewar, J. Phys. A: Math. Gen. 36, 631 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. G. W. Paltridge, Nature 279, 630 (1979).

    Article  ADS  Google Scholar 

  7. I. J. Ford and T.-L. Lee, J. Phys. D: Appl. Phys. 34, 413 (2001).

    Article  ADS  Google Scholar 

  8. L. M. Martyushev, V. D. Seleznev, and I. E. Kuznetsova, Zh. Éksp. Teor. Fiz. 118, 149 (2000) [JETP 91, 132 (2000)].

    Google Scholar 

  9. L. M. Martyushev and E. G. Axelrod, Pis’ma Zh. Éksp. Teor. Fiz. 78, 948 (2003) [JETP Lett. 78, 476 (2003)].

    Google Scholar 

  10. A. A. Shibkov, M. A. Zheltov, and A. A. Korolev, Dokl. Akad. Nauk 389, 497 (2003) [Dokl. Phys. Chem. 389, 94 (2003)].

    Google Scholar 

  11. A. A. Shibkov, Yu. I. Golovin, M. A. Zheltov, et al., Physica A (Amsterdam) 319, 65 (2003).

    ADS  Google Scholar 

  12. A. Hill, Nature 348, 426 (1990).

    Article  ADS  Google Scholar 

  13. L. Schiller, Fluid Flow in Pipes (ONTI, Moscow, 1936).

    Google Scholar 

  14. R. R. Kerswell, Nonlinearity 18, R17 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. A. G. Darbyshire and T. Mullin, J. Fluid Mech. 289, 83 (1995).

    Article  ADS  Google Scholar 

  16. A. J. Reynolds, Turbulent Flows in Engineering (Wiley, New York, 1974; Énergiya, Moscow, 1979).

    Google Scholar 

  17. I. E. Idel’chik, Handbook of Hydraulic Resistance, 3rd ed. (Mashinostroenie, Moscow, 1992; CRC Press, Boca Raton, FL, 1994).

    Google Scholar 

  18. S. C. Plasting and R. R. Kerswell, Phys. Fluids 17, 011706 (2005).

    Google Scholar 

  19. B. J. McKeon, M. V. Zagarola, and A. J. Smits, J. Fluid Mech. 538, 429 (2005).

    Article  ADS  Google Scholar 

  20. J. Peixinho and T. Mullin, Phys. Rev. Lett. 96, 094501 (2006).

    Google Scholar 

  21. B. Hof, A. Juel, and T. Mullin, Phys. Rev. Lett. 91, 244502 (2003).

  22. I. Wygnanski, M. Sokolov, and D. Friedman, J. Fluid Mech. 69, 283 (1975).

    Article  ADS  Google Scholar 

  23. B. Benhamou, A. Laneville, and N. Galanis, Int. J. Therm. Sci. 43, 1141 (2004).

    Article  Google Scholar 

  24. H. Faisst and B. Eckhardt, Phys. Rev. Lett. 91, 224502 (2003).

    Google Scholar 

  25. H. Wedin and R. R. Kerswell, J. Fluid Mech. 508, 333 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.M. Martyushev, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 131, No. 4, pp. 738–742.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martyushev, L.M. Some interesting consequences of the maximum entropy production principle. J. Exp. Theor. Phys. 104, 651–654 (2007). https://doi.org/10.1134/S1063776107040152

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107040152

PACS numbers

Navigation