Skip to main content
Log in

Crystal structure and properties of Bi1 − x Ca x FeO3 and Bi1 − x Ca x FeO1 − x Ti x O3 solid solutions

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Systems of solid solutions Bi1 − x Ca x FeO3 (I) and Bi1 − x CaxFeO1 − x Ti x O3 (II) have been obtained and their properties have been studied using neutronography and Mössbauer spectroscopy; magnetization and permittivity have been measured. It is shown that an increase in the concentration of calcium ions in system I for x > 0.2 changes rhombohedral distortions of a unit cell (space group R3c) to tetragonal distortions (space group I4/mcm), while rhombohedral distortions in system II for x > 0.2 are replaced by orthorhombic distortions (space group Pnma). Analysis of the crystal structure has revealed strong anisotropy in vibrations of Bi and O ions in system I compounds. Systems I and II are characterized by G-type antiferromagnetic ordering of magnetic moments. In system II, spontaneous magnetization associated with the Dzyaloshinskii-Moriya interaction has been detected. According to Mössbauer spectroscopy data, iron ions in compounds I and II are in the trivalent state and charge compensation occurs due to the formation of oxygen vacancies. The permittivity increases with the calcium concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Fiebig, J. Phys. D: Appl. Phys. 38, 123 (2005).

    Article  ADS  Google Scholar 

  2. W. Prellier, M. P. Singh, P. Muragavel, et al., J. Phys.: Condens. Matter 17, 803 (2005).

    Article  ADS  Google Scholar 

  3. H. Bea, M. Bibes, M. Sirena, et al., Appl. Phys. Lett. 88, 062502 (2006).

    Article  ADS  Google Scholar 

  4. C. Michel, J. M. Moreau, G. D. Achenbach, et al., Solid State Commun. 7, 701 (1969).

    Article  ADS  Google Scholar 

  5. B. Ruette, S. Zvyagin, A. Pyatakov, et al., Phys. Rev. B: Condens. Matter 69, 064114 (2004).

    ADS  Google Scholar 

  6. A. Palewicz, R. Przenioslo, I. Sosnovska, and A. W. Hewat, Acta Crystallogr., Sect. B: Struct. Sci. 63, 537 (2007).

    Article  Google Scholar 

  7. A. Palewicz, T. Shumiata, R. Przenioslo, et al., Solid State Commun. 140, 359 (2006).

    Article  ADS  Google Scholar 

  8. R. Przenioslo, M. Regulski, and I. Sosnowska, J. Phys. Soc. Jpn. 75, 084718 (2006).

    Article  ADS  Google Scholar 

  9. I. Sosnowska, W. Schäfer, W. Kockelmann, et al., Appl. Phys. A: Mater. Sci. Process. 74, 1040 (2002).

    Article  ADS  Google Scholar 

  10. J. Wang, J. Neaton, H. Zheng, et al., Science (Washington) 299, 1719 (2003).

    Article  ADS  Google Scholar 

  11. J. F. Li, J. Wang, N. Wang, et al., Appl. Phys. Lett. 84, 5261 (2004).

    Article  ADS  Google Scholar 

  12. D. Lee, M. G. Kim, S. Ryu, et al., Appl. Phys. Lett. 86, 222903 (2005).

    Article  ADS  Google Scholar 

  13. J. Cheng, B. Ruette, S. Dong, et al., Phys. Rev. B: Condens. Matter 72, 104434 (2005).

    Google Scholar 

  14. G. L. Yuan and S. W. Or, Appl. Phys. Lett. 88, 062905 (2006).

    Article  ADS  Google Scholar 

  15. A. V. Zalesskioe, A. A. Frolov, T. A. Khimich, and A. A. Bush, Fiz. Tverd. Tela (St. Petersburg) 45(1), 134 (2003) [Phys. Solid State 45 (1), 141 (2003)].

    Google Scholar 

  16. Sh.-T. Zhang, Y. Zhang, M.-H. Lu, et al., Appl. Phys. Lett. 88, 162901 (2006).

    Article  ADS  Google Scholar 

  17. N. Wang, J. Cheng, A. Pyatakov, et al., Phys. Rev. B: Condens. Matter 72, 104434 (2005).

    ADS  Google Scholar 

  18. J. Cheng, Sh. Yu, J. Chen, et al., Appl. Phys. Lett. 89, 122911 (2006).

    Article  ADS  Google Scholar 

  19. D. I. Woodward, I. M. Reaney, R. E. Eitel, et al., Appl. Phys. 94, 3313 (2003).

    Article  Google Scholar 

  20. C. M. Yagnik, R. Gerson, and W. J. James, Appl. Phys. 42, 395 (1971).

    Article  Google Scholar 

  21. V. A. Khomchenko, D. A. Kiselev, E. K. Selezneva, et al., Mater. Lett. 62, 1927 (2008).

    Article  Google Scholar 

  22. V. A. Khomchenko, D. A. Kiselev, J. M. Vieira, et al., Appl. Phys. Lett. 90, 242901 (2007).

    Article  ADS  Google Scholar 

  23. B. Kyle, I. Takashi, and T. Hitoshi, Jpn. J. Appl. Phys. 46, 93 (2007).

    Article  Google Scholar 

  24. P. Adler, A. Lebon, V. Damljanovich, et al., Phys. Rev. B: Condens. Matter 73, 094451 (2006).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Troyanchuk.

Additional information

Original Russian Text © I.O. Troyanchuk, D.V. Karpinsky, M.V. Bushinskii, O. Prokhnenko, M. Kopcevicz, R. Szymczak, J. Pietosa, 2008, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2008, Vol. 134, No. 1, pp. 105–112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troyanchuk, I.O., Karpinsky, D.V., Bushinskii, M.V. et al. Crystal structure and properties of Bi1 − x Ca x FeO3 and Bi1 − x Ca x FeO1 − x Ti x O3 solid solutions. J. Exp. Theor. Phys. 107, 83–89 (2008). https://doi.org/10.1134/S106377610807008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377610807008X

PACS numbers

Navigation