Skip to main content
Log in

Magnetic anisotropy of strained epitaxial manganite films

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The in-plane magnetic anisotropy of epitaxial La0.7Sr0.3MnO3 (LSMO) films is studied at room temperature by the following three independent techniques: magnetooptical Kerr effect, ferromagnetic resonance at a frequency of 9.61 GHz, and recording of absorption spectra of electromagnetic radiation at a frequency of 290.6 MHz. The films are deposited onto NdGaO3 (NGO) substrates in which the (110)NGO plane is tilted at an angle of 0–25.7° to the substrate plane. The uniaxial magnetic anisotropy induced by the strain of the film is found to increase with the tilt angle of the (110)NGO plane. A model is proposed to describe the change in the magnetic anisotropy energy with the tilt angle. A sharp increase in the radio-frequency absorption in a narrow angular range of a dc magnetic field near a hard magnetization axis is detected The anisotropy parameters of the LSMO films grown on (110)NGO, (001)SrTiO3, and (001)[(LaAlO3)0.3 + (Sr2AlTaO6)0.7] substrates are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Prellier, Ph. Lecoeur, and B. Mercey, J. Phys: Condens. Matter 13, R915 (2001).

    Article  ADS  Google Scholar 

  2. A.-M. Haghiri-Cosnet and J. P. Renard, J. Phys. D: Appl. Phys. 36, R127 (2003).

    Article  ADS  Google Scholar 

  3. K. Steenbeck and R. Hiergeist, Appl. Phys. Lett. 75,1778 (1999).

    Article  ADS  Google Scholar 

  4. M. Ziese, H. S. Semmelhack, and P. Busch, J. Magn. Magn. Mater. 246, 327 (2002).

    Article  ADS  Google Scholar 

  5. P. Dey, T. K. Nath, and A. Tarapher, Appl. Phys. Lett. 91, 012511 (2007).

    Article  ADS  Google Scholar 

  6. F. Tsui, M. C. Smoak, T. K. Nath, and C. B. Eom, Appl. Phys. Lett. 76, 2421 (2000).

    Article  ADS  Google Scholar 

  7. Y. P. Lee, S. Y. Park, Y. H. Hyun, J. B. Kim, V. G. Prokhorov, V. A. Komashko, and V. L. Svetchnikov, Phys. Rev. B: Condens. Matter 73, 224413 (2006).

    Article  ADS  Google Scholar 

  8. Yan Wu, Y. Suzuki, U. Rüdiger, J. Yu, A. D. Kent, T. K. Nath, and C. B. Eom, Appl. Phys. Lett. 75, 2295 (1999).

    Article  ADS  Google Scholar 

  9. Y. Suzuki, H. Y. Hwang, S.-W. Cheong, T. Siegrist, R. B. van Dover, A. Asamitsu, and Y. Tokura, J. Appl. Phys. 83, 7064 (1998).

    Article  ADS  Google Scholar 

  10. G. A. Ovsyannikov, A. M. Petrzhik, I. V. Borisenko, A. A. Klimov, Yu. A. Ignatov, V. V. Demidov, and S. A. Nikitov, Zh. Eksp. Teor. Fiz. 135(1), 56 (2009) [JETP 108 (1), 48 (2009)].

    Google Scholar 

  11. M. Bibes, S. Valencia, L. Balcells, B. Martinez, J. Fontcuberta, M. Wojcik, S. Nadolski, and E. Jedryka, Phys. Rev. B: Condens. Matter 66, 134416 (2002).

    Article  ADS  Google Scholar 

  12. Z.-H. Wang, G. Cristiani, and H.-U. Habermeire, Appl. Phys. Lett. 82, 3731 (2003).

    Article  ADS  Google Scholar 

  13. M. Mathews, R. Jansen, G. Rijnders, J. C. Lodder, and D. H. A. Blank, Phys. Rev. B: Condens. Matter 80, 064408 (2009).

    Article  ADS  Google Scholar 

  14. H. Boschker, M. Mathews, E. P. Houwman, H. Nishikawa, A. Vailionis, G. Koster, G. Rijnders, and D. H. A. Blank, Phys. Rev. B: Condens. Matter 79, 214425 (2009).

    Article  ADS  Google Scholar 

  15. M. Mathews, F. M. Postma, J. C. Lodder, R. Jansen, G. Rijnders, and D H. A. Blank, Appl. Phys. Lett. 87, 242507 (2005).

    Article  ADS  Google Scholar 

  16. M. C. Martin, G. Shirane, Y. Endoh, K. Hirota, Y. Moritomo, and Y. Tokura, Phys. Rev. B: Condens. Matter 53, 14285 (1996).

    Article  ADS  Google Scholar 

  17. A. E. Mefed and V. V. Demidov, Prib. Tekh. Eksp., No. 3, 99 (2008) [Instrum. Exp. Tech. 51 (3), 418 (2008)].

  18. A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  19. T. M. Vasilevskaya and D. I. Sementsov, Fiz. Met. Metalloved. 108(4), 339 (2009) [Phys. Met. Metallogr. 108 (4), 321 (2009)].

    Google Scholar 

  20. B. A. Belyaev, A. V. Izotov, and S. Ya. Kiparisov, Pis’ma Zh. Eksp. Teor. Fiz. 74(4), 248 (2001) [JETP Lett. 74 (4), 226 (2001)].

    Google Scholar 

  21. T. M. Vasilevskaya and D. I. Sementsov, Zh. Eksp. Teor. Fiz. 137(5), 861 (2010) [JETP 110 (5), 754 (2010)].

    Google Scholar 

  22. R. K. Kawakami, E. J. Escorcia-Aparicio, and Z. Q. Qui, Phys. Rev. Lett. 77, 2570 (1996).

    Article  ADS  Google Scholar 

  23. Y. Z. Wu, C. Won, and Z. Q. Qui, Phys. Rev. B: Condens. Matter 65, 184419 (2002).

    Article  ADS  Google Scholar 

  24. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Demidov.

Additional information

Original Russian Text © V.V. Demidov, I.V. Borisenko, A.A. Klimov, G.A. Ovsyannikov, A.M. Petrzhik, S.A. Nikitov, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 139, No. 5, pp. 943–951.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demidov, V.V., Borisenko, I.V., Klimov, A.A. et al. Magnetic anisotropy of strained epitaxial manganite films. J. Exp. Theor. Phys. 112, 825–832 (2011). https://doi.org/10.1134/S1063776111040029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111040029

Keywords

Navigation