Skip to main content
Log in

Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

One-dimensional quasi-periodic nanogratings with spacings in the range from 160 to 600 nm are written on a dry or wet titanium surface exposed to linearly polarized femtosecond IR and UV laser pulses with different surface energy densities. The topological properties of the obtained surface nanostructures are studied by scanning electron microscopy. Despite the observation of many harmonics of the one-dimensional surface relief in its Fourier spectra, a weak decreasing dependence of the first-harmonic wavenumber (nanograting spacing) on the laser fluence is found. Studies of the instantaneous optical characteristics of the material during laser irradiation by measuring the reflection of laser pump pulses and their simulation based on the Drude model taking into account the dominant interband absorption allowed us to estimate the length of the excited surface electromagnetic (plasmon-polariton) wave for different excitation conditions. This wavelength is quantitatively consistent with the corresponding nanograting spacings of the first harmonic of the relief of the dry and wet titanium surfaces. It is shown that the dependence of the first-harmonic nanograting spacing on the laser fluence is determined by a change in the instantaneous optical characteristics of the material and the saturation of the interband absorption along with the increasing role of intraband transitions. Three new methods are proposed for writing separate subwave surface nanogratings or their sets by femtosecond laser pulses using the near-threshold nanostructuring, the forced adjustment of the optical characteristics of the material or selecting the spectral range of laser radiation, and also by selecting an adjacent dielectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Zabotnov, L. A. Golovan’, I. A. Ostapenko, Yu. V. Ryabchikov, A. V. Chervyakov, V. Yu. Timosh- enko, P. K. Kashkarov, and V. V. Yakovlev, Pis’ma Zh. Eksp. Teor. Fiz. 83(2), 76 (2006) [JETP Lett. 83 (2), 69 (2006)].

    Google Scholar 

  2. R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, Appl. Surf. Sci. 252, 8576 (2006).

    Article  ADS  Google Scholar 

  3. A. Y. Vorobyev, V. S. Makin, and C. Guo, J. Appl. Phys. 101, 034903 (2007).

    Article  ADS  Google Scholar 

  4. Y. Yang, J. Yang, C. Liang, and H. Wang, Opt. Express 16, 11259 (2008).

    Article  ADS  Google Scholar 

  5. G. Miyaji and K. Miyazaki, Opt. Express 16, 16265 (2008).

    Article  ADS  Google Scholar 

  6. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, Opt. Express 16, 19354 (2008).

    Article  ADS  Google Scholar 

  7. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, Phys. Rev. B: Condens. Matter 79, 125436 (2009).

    Article  ADS  Google Scholar 

  8. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, Phys. Rev. B: Condens. Matter 79, 033409 (2009).

    Article  ADS  Google Scholar 

  9. E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, Appl. Surf. Sci. 255, 5346 (2009).

    Article  ADS  Google Scholar 

  10. E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, Langmuir 25, 1790 (2009).

    Article  Google Scholar 

  11. T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, Langmuir 22, 4917 (2006).

    Article  Google Scholar 

  12. A. Y. Vorobyev and C. Guo, Appl. Phys. Lett. 94, 224102 (2009); Opt. Express 18, 6455 (2010).

    Article  ADS  Google Scholar 

  13. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, Opt. Lett. 30, 1773 (2005).

    Article  ADS  Google Scholar 

  14. A. Y. Vorobyev, V. S. Makin, and C. Guo, Phys. Rev. Lett. 102, 234301 (2009).

    Article  ADS  Google Scholar 

  15. A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, J. Phys. Chem. B 107, 4527 (2003).

    Article  Google Scholar 

  16. L. A. Golovan, I. O. Djun, A. E. Dokukina, S. V. Zabotnov, A. A. Ezhov, P. K. Kashkarov, N. E. Maslova, I. O. Ostapenko, V. I. Panov, and V. U. Timoshenko, Izv. Akad. Nauk, Ser. Fiz. 73(1), 43 (2009) [Bull. Russ. Acad. Sci.: Phys. 73 (1), 39 (2009)].

    Google Scholar 

  17. R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, Appl. Phys. Lett. 87, 124105 (2005).

    Article  ADS  Google Scholar 

  18. E. V. Golosov, V. I. Emel’yanov, A. A. Ionin, Yu. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Yu. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, Pis’ma Zh. Eksp. Teor. Fiz. 90(2), 116 (2009) [JETP Lett. 90 (2), 107 (2009)].

    Google Scholar 

  19. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, Phys. Rev. B: Condens. Matter 27, 1141 (1983).

    Article  ADS  Google Scholar 

  20. S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, Usp. Fiz. Nauk 147(4), 675 (1985) [Sov. Phys.—Usp. 28 (12), 1084 (1985)].

    Article  Google Scholar 

  21. A. Borowiec and H. K. Hagen, Appl. Phys. Lett. 82, 4462 (2003).

    Article  ADS  Google Scholar 

  22. N. Yasumaru, K. Miyazaki, and J. Kiuchi, Appl. Phys. A: Mater. Sci. Process. 76, 983 (2003).

    Article  ADS  Google Scholar 

  23. J. Bonse, M. Munz, and H. Sturm, J. Appl. Phys. 97, 013538 (2005).

    Article  ADS  Google Scholar 

  24. V. D. Zvorykin, A. A. Ionin, S. I. Kudryashov, Yu. N. Ponomarev, L. V. Seleznev, D. V. Sinitsyn, and B. A. Tikhomirov, Pis’ma Zh. Eksp. Teor. Fiz. 88(1), 10 (2008) [JETP Lett. 88 (1), 8 (2008)].

    Google Scholar 

  25. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    Article  ADS  Google Scholar 

  26. S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, Kvantovaya Elektron. (Moscow) 32, 433 (2002).

    Article  Google Scholar 

  27. M. Ye and C. P. Grigoropoulos, J. Appl. Phys. 89, 5183 (2001).

    Article  ADS  Google Scholar 

  28. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, Orlando, Florida, United States, 1998).

    Google Scholar 

  29. A. Aguayo, G. Murrieta, and R. de Coss, Phys. Rev. B: Condens. Matter 65, 092106 (2002).

    Article  ADS  Google Scholar 

  30. R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. B: Condens. Matter 51, 11433 (1995).

    Article  ADS  Google Scholar 

  31. S. I. Kudryashov and V. I. Emel’yanov, Pis’ma Zh. Eksp. Teor. Fiz. 73(12), 751 (2001) [JETP Lett. 73 (12), 666 (2001)].

    Google Scholar 

  32. V. S. Makin, R. S. Makin, A. Ya. Vorobyev, and C. Guo, Pis’ma Zh. Tekh. Fiz. 34(9), 55 (2008) [Tech. Phys. Lett. 34 (5), 387 (2008)].

    Google Scholar 

  33. V. P. Veiko, M. N. Libenson, G. G. Chervyakov, and E. B. Yakovlev, Interaction of Radiation with Matter (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  34. V. A. Soifer, Komp’yuternaya Opt. 32, 110 (2008).

    Google Scholar 

  35. K. Ke, E. F. Hasselbrink, Jr., and A. J. Hunt, Anal. Chem. 77, 5083 (2005).

    Article  Google Scholar 

  36. I. S. Grigoriev and E. Z. Meilikhov, Handbook of Physical Quantities (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).

    Google Scholar 

  37. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).

    Google Scholar 

  38. V. S. Makin, Fotonika, No. 2, 16 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kudryashov.

Additional information

Original Russian Text © E.V. Golosov, A.A. Ionin, Yu.R. Kolobov, S.I. Kudryashov, A.E. Ligachev, Yu.N. Novoselov, L.V. Seleznev, D.V. Sinitsyn, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 140, No. 1, pp. 21–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golosov, E.V., Ionin, A.A., Kolobov, Y.R. et al. Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief. J. Exp. Theor. Phys. 113, 14–26 (2011). https://doi.org/10.1134/S1063776111050025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111050025

Keywords

Navigation