Skip to main content
Log in

Donor doping of single-walled carbon nanotubes by filling of channels with silver

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The channels of single-walled carbon nanotubes (SWNTs) are filled with metallic silver. The synthesized nanocomposites are studied by Raman spectroscopy and optical absorption spectroscopy, and these data indicate a substantial modification of the electronic structure of the nanotubes upon their filling. Moreover, X-ray photoelectron spectroscopy shows that the incorporation of the metal leads to a change in the work function of SWNTs due to the Fermi level upshift and to the transfer of an electron density from inserted nanoparticles to the nanotube walls. Thus, the filling of the channels with silver results in donor doping of the nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature (London) 354, 56 (1991).

    Article  ADS  Google Scholar 

  2. T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature (Londo) 391, 62 (1998).

    Article  ADS  Google Scholar 

  3. R. R. He, H. Z. Jin, J. Zhu, Y. J. Yan, and X. H. Chen, Chem. Phys. Lett. 298, 170 (1998).

    Article  ADS  Google Scholar 

  4. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, Phys. Rev. Lett. 82, 2548 (1999).

    Article  ADS  Google Scholar 

  5. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature (London) 381, 678 (1996).

    Article  ADS  Google Scholar 

  6. S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature (London) 393, 49 (1998).

    Article  ADS  Google Scholar 

  7. Z. Chen, J. Appenzeller, Y.-M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Tang, S. J. Wind, P. M. Solomon, and P. Avouris, Science (Washington) 311, 1735 (2006).

    Article  Google Scholar 

  8. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33, 883 (1995).

    Article  Google Scholar 

  9. R. Saito, M. Fujita, G. Dresselhaus, and M. S Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).

    Article  ADS  Google Scholar 

  10. R. Krupke, F. Hennrich, H. Lönneysen, and M. M. Kappes, Science (Washington) 301, 344 (2000).

    Article  ADS  Google Scholar 

  11. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science (Washington) 297, 593 (2002).

    Article  ADS  Google Scholar 

  12. M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, and D. J. Walls, Science (Washington) 302, 1545 (2003).

    Article  ADS  Google Scholar 

  13. P. G. Collins, M. S. Arnold, and P. Avouris, Science (Washington) 292, 706 (2001).

    Article  ADS  Google Scholar 

  14. G. G. Samsonidze, S. G. Chou, A. P. Santos, V. W. Brar, G. Dresselhaus, M. S. Dresselhaus, A. Selbst, A. K. Swan, M. S. ünlü, B. B. Goldberg, D. Chattopadhyay, S. N. Kim, and F. Papadimitrakopoulos, Appl. Phys. Lett. 85, 1006 (2004).

    Article  ADS  Google Scholar 

  15. P. Ayala, R. Arenal, A. Loiseau, A. Rubio, and T. Pichler, Rev. Mod. Phys. 82, 1843 (2010).

    Article  ADS  Google Scholar 

  16. E. Dujardin, T. W. Ebbesen, H. Hiura, and K. Tanigaki, Science (Washington) 265, 1850 (1994).

    Article  ADS  Google Scholar 

  17. Y. F. Li, T. Kaneko, T. Ogawa, M. Takahashi, and R. Hatakeyama, Chem. Commun. (Cambridge), No. 3, 254 (2007).

  18. J. Sloan, J. Hammer, M. Zwiefka-Sibley, and M. L. H. Green, Chem. Commun. (Cambridge), No. 3, 347 (1998).

  19. J. Sloan, A. I. Kirkland, J. L. Hutchison, M. L. H. Green, C. R. Phys. 4, 1063 (2003).

    Article  ADS  Google Scholar 

  20. A. Kukovecz, T. Pichler, R. Pfeiffer, C. Kramberger, and H. Kuzmany, Phys. Chem. Chem. Phys. 5, 582 (2003).

    Article  Google Scholar 

  21. T. Pichler, X. Liu, M. Knupfer, and J. Fink, New J. Phys. 5, 156 (2003)

    Article  ADS  Google Scholar 

  22. A. Penicaud, P. Poulin, A. Derre, E. Anglaret, and P. Petit, J. Am. Chem. Soc. 127, 8 (2005).

    Article  Google Scholar 

  23. R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, and R. E. Smalley, Nature (London) 388, 255 (1997).

    Article  ADS  Google Scholar 

  24. A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, and R. E. Smalley, Nature (London) 388, 257 (1997).

    Article  ADS  Google Scholar 

  25. A. A. Eliseev, L. V. Yashina, M. M. Brzhezinskaya, M. V. Chernysheva, M. V. Kharlamova, N. I. Verbitsky, A. V. Lukashin, N. A. Kiselev, A. S. Kumskov, R. M. Zakalyuhin, J. L. Hutchison, B. Freitag, and A. S. Vinogradov, Carbon 48, 2708 (2010).

    Article  Google Scholar 

  26. M. V. Kharlamova, L. V. Yashina, A. A. Volykhov, J. J. Niu, V. S. Neudachina, M. M. Brzhezinskaya, T. S. Zyubina, A. I. Belogorokhov, and A. A. Eliseev, Eur. Phys. J. B 85, 34 (2012).

    Article  ADS  Google Scholar 

  27. M. V. Kharlamova, A. A. Eliseev, L. V. Yashina, D. I. Petukhov, Chan-Pu Liu, Chen-Yu Wang, D. A. Semenenko, and A. I. Belogorokhov, JETP Lett. 91(4), 196 (2010).

    Article  ADS  Google Scholar 

  28. M. V. Kharlamova, M. M. Brzhezinskaya, A. S. Vinogradov, I. P. Suzdalev, Yu. V. Maksimov, V. K. Imshennik, S. V. Novichikhin, A. V. Krestinin, L. V. Yashina, A. V. Lukashin, Yu. D. Tret’yakov, and A. A. Eliseev, Nanotechnol. Russ. 4(9–10), 634 (2009).

    Article  Google Scholar 

  29. L. J. Li, A. N. Khlobystov, J. G. Wiltshire, G. A. D. Briggs and R. J. Nicholas, Nat. Mater. 4, 481 (2005).

    Article  ADS  Google Scholar 

  30. L. V. Yashina, A. A. Eliseev, M. V. Kharlamova, A. A. Volykhov, A. V. Egorov, S. V. Savilov, A. V. Lukashin, R. Püttner, and A. I. Belogorokhov, J. Phys. Chem. C 115, 3578 (2011).

    Article  Google Scholar 

  31. J. Lu, S. Nagase, D. P. Yu, H. Ye, R. Han, Z. Gao, S. Zhang, and L. Peng, Phys. Rev. Lett. 93, 116804 (2004).

    Article  ADS  Google Scholar 

  32. T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, and Y. Iwasa, Nat. Mater. 2, 683 (2003).

    Article  ADS  Google Scholar 

  33. H. Shiozawa, T. Pichler, C. Kramberger, A. Grüneis, M. Knupfer, B. Büchner, V. Zólyomi, J. Koltai, J. Kürti, D. Batchelor, and H. Kataura, Phys. Rev. B: Condens. Matter 77, 153402 (2008).

    Article  ADS  Google Scholar 

  34. R. J. Baierle, S. B. Fagan, R. Mota, A. J. R. da Silva, and A. Fazzio, Phys. Rev. B: Condens. Matter 64, 085413 (2001).

    Article  ADS  Google Scholar 

  35. S. B. Fagan, R. Mota, A. J. R. da Silva, and A. Fazzio, Nano Lett. 4, 975 (2004).

    Article  ADS  Google Scholar 

  36. A. A. Eliseev, M. V. Kharlamova, M. V. Chernysheva, A. V. Lukashin, Yu. D. Tretyakov, A. S. Kumskov, and N. A. Kiselev, Rus. Chem. Rev. 78, 833 (2009).

    Article  Google Scholar 

  37. W. Y. Choi, J. W. Kang, and H. J. Hwang, Phys. Rev. B: Condens. Matter 68, 193405 (2003).

    Article  ADS  Google Scholar 

  38. S. B. Fagan, A. G. S. Filho, J. M. Filho, P. Corio, and M. S. Dresselhaus, Chem. Phys. Lett. 406, 54 (2005).

    Article  ADS  Google Scholar 

  39. K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, and S. Iijima, Phys. Rev. Lett. 85, 5384 (2000).

    Article  ADS  Google Scholar 

  40. E. L. Sceats, J. C. Green, and S. Reich, Phys. Rev. B: Condens. Matter 73, 125441 (2006).

    Article  ADS  Google Scholar 

  41. S. B. Fagan, R. Mota, A. J. R. da Silva, and A. Fazzio, Phys. Rev. B: Condens. Matter 67, 205414 (2003).

    Article  ADS  Google Scholar 

  42. A. A. Eliseev, L. V. Yashina, M. V. Kharlamova, and N. A. Kiselev, in Electronic Properties of Carbon Nanotubes, Ed. by J. M. Marulanda (InTech, Rijeka, Croatia, 2011), Chap. 8, p. 127.

    Google Scholar 

  43. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, and R. Saito, Carbon 40, 2043 (2002).

    Article  Google Scholar 

  44. A. Jorio, M. Pimenta, A. S. Filho, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, New J. Phys. 5, 139 (2003).

    Article  ADS  Google Scholar 

  45. S. H. Lim, Phys. Rev. B: Condens. Matter 73, 045402 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kharlamova.

Additional information

Original Russian Text © M.V. Kharlamova, J.J. Niu, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 142, No. 3, pp. 547–555.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharlamova, M.V., Niu, J.J. Donor doping of single-walled carbon nanotubes by filling of channels with silver. J. Exp. Theor. Phys. 115, 485–491 (2012). https://doi.org/10.1134/S1063776112080092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112080092

Keywords

Navigation