Skip to main content
Log in

Antihysteresis of the electrical resistivity of graphene on a ferroelectric Pb(Zr x Ti1 − x )O3 substrate

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A quantitative model is developed to explain the antihysteretic behavior of the electrical resistivity of graphene on a ferroelectric Pb(Zr x Ti1 − x )O3 substrate as a function of the gate voltage. The model takes into account the trapping of the electrons from the graphene layer by the states related to the graphene-ferroelectric interface. The finite energy gap of impurity states is also taken into account, which makes it possible to describe the well-known experimental dependences, including an increase and the subsequent saturation of a “memory window” with the switching gate voltage. The obtained estimates can be important for creating next-generation nonvolatile memory elements, which use the two stable values of electrical resistivity (one of them is attributed to logical “0” and the other, to “1”) that result from the antihysteresis effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Strikha, Ukr. J. Phys. Opt. 13,Suppl. 3 Sci. Horiz., S5 (2012).

    Article  Google Scholar 

  2. Yi Zheng, G.-X. Ni, C.-T. Toh, M.-G. Zeng, S.-T. Chen, K. Yao, and B. Özyilmaz, Appl. Phys. Lett. 94, 163505 (2009).

    Article  ADS  Google Scholar 

  3. Yi Zheng, G.-X. Ni, C.-T. Toh, C.-Y. Tan, K. Yao, and B. Özyilmaz, Phys. Rev. Lett. 105, 166602 (2010).

    Article  ADS  Google Scholar 

  4. S. Raghavan, I. Stolichnov, N. Setter, J.-S. Heron, M. Tosun, and A. Kis, Appl. Phys. Lett. 100, 023507 (2012).

    Article  ADS  Google Scholar 

  5. J. Rouquette, J. Haines, V. Bornand, M. Pintard, Ph. Papet, C. Bousquet, L. Konczewicz, F. A. Gorelli, and S. Hull, Phys. Rev. B: Condens. Matter 70, 014108 (2004).

    Article  ADS  Google Scholar 

  6. X. Hong, J. Hoffman, A. Posadas, K. Zou, C. H. Ahn, and J. Zhu, Appl. Phys. Lett. 97, 033114 (2010).

    Article  ADS  Google Scholar 

  7. Y. Zheng, G.-X. Ni, S. Bae, C.-X. Cong, O. Kahya, C.-T. Toh, H. R. Kim, D. Im, T. Yu, J. H. Ahn, B. H. Hong, and B. Özyilmaz, Europhys. Lett. 93, 17002 (2011).

    Article  ADS  Google Scholar 

  8. E. B. Song, B. Lian, S. M. Kim, S. Lee, T.-K. Chung, M. Wang, C. Zeng, G. Xu, K. Wong, Y. Zhou, H. I. Rasool, D. H. Seo, H.-J. Chung, J. Heo, S. Seo, and K. L. Wang, Appl. Phys. Lett. 99, 042109 (2011).

    Article  ADS  Google Scholar 

  9. M. V. Strikha, Ukr. J. Phys. Opt. 12, 162 (2011).

    Article  Google Scholar 

  10. M. V. Strikha, JETP Lett. 95(4), 198 (2012).

    Article  ADS  Google Scholar 

  11. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).

    Article  ADS  Google Scholar 

  12. A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature (London) 419, 378 (2002).

    Article  ADS  Google Scholar 

  13. M. V. Strikha, Ukr. J. Phys. Opt. 13, 45 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Strikha.

Additional information

Original Russian Text © A.I. Kurchak, M.V. Strikha, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 1, pp. 129–135.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurchak, A.I., Strikha, M.V. Antihysteresis of the electrical resistivity of graphene on a ferroelectric Pb(Zr x Ti1 − x )O3 substrate. J. Exp. Theor. Phys. 116, 112–117 (2013). https://doi.org/10.1134/S106377611301007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611301007X

Keywords

Navigation