Skip to main content
Log in

Thermal melting and ablation of silicon by femtosecond laser radiation

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bäuerle, Laser Processing and Chemistry (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  2. M. Ishino, A. Ya. Faenov, M. Tanaka, N. Hasegawa, M. Nishikino, S. Tamotsu, T. A. Pikuz, N. A. Inogamov, V. V. Zhakhovsky, I. Yu. Skobelev, V. E. Fortov, V. A. Khohlov, V. V. Shepelev, T. Ohba, T. Kaihori, Y. Ochi, T. Imazono, and T. Kawachi, J. Appl. Phys. 109, 013504 (2011).

    Article  ADS  Google Scholar 

  3. A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, JETP Lett. 94(4), 266 (2011).

    Article  ADS  Google Scholar 

  4. C. V. Shank, R. Yen, and C. Hirlimann, Phys. Rev. Lett. 50, 454 (1983).

    Article  ADS  Google Scholar 

  5. M. C. Downer, R. L. Fork, and C. V. Shank, J. Opt. Soc. Am. B 2, 595 (1985).

    Article  ADS  Google Scholar 

  6. P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, Phys. Rev. Lett. 67, 1023 (1991).

    Article  ADS  Google Scholar 

  7. K. Sokolowski-Tinten, H. Schulz, J. Bialkowski, and D. von der Linde, Appl. Phys. A: Solids Surf. 53, 227 (1991).

    Article  ADS  Google Scholar 

  8. J. Bonse, Appl. Phys. A: Mater. Sci. Process. 84, 63 (2006).

    Article  ADS  Google Scholar 

  9. X. Y. Wang and M. C. Downer, Opt. Lett. 17, 1450 (1992).

    Article  ADS  Google Scholar 

  10. K. Sokolowski-Tinten, S. I. Kudryashov, V. Temnov, J. Bialkowski, D. von der Linde, A. Cavalleri, H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, Springer Ser. Chem. Phys. 66, 425 (2000).

    Article  Google Scholar 

  11. T. Y. Choi and C. P. Grigoropoulos, J. Appl. Phys. 92, 4818 (2002).

    Google Scholar 

  12. J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, J. Appl. Phys. 103, 054910 (2008).

    Article  ADS  Google Scholar 

  13. N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, K. Nishihara, and V. E. Fortov, JETP 107(1), 1 (2008).

    Article  ADS  Google Scholar 

  14. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, and D. von der Linde, Proc. SPIE-Int. Soc. Opt. Eng. 3343, 46 (1998).

    Article  ADS  Google Scholar 

  15. S. I. Ashitkov, M. B. Agranat, G. I. Kanel’, P. S. Komarov, and V. E. Fortov, JETP Lett. 92(8), 516 (2010).

    Article  ADS  Google Scholar 

  16. N. A. Inogamov, V. V. Zhakhovsky, S. I. Ashitkov, V. A. Khokhlov, V. V. Shepelev, P. S. Komarov, A. V. Ovchinnikov, D. S. Sitnikov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, and V. E. Fortov, Contrib. Plasma Phys. 51, 367 (2011).

    Article  ADS  Google Scholar 

  17. X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, Appl. Phys. A: Mater. Sci. Process. 80, 237 (2005).

    Article  ADS  Google Scholar 

  18. T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, Appl. Surf. Sci. 197, 720 (2002).

    Article  ADS  Google Scholar 

  19. I. Mingareev and A. Horn, Appl. Phys. A: Mater. Sci. Process. 92, 917 (2008).

    Article  ADS  Google Scholar 

  20. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, Phys. Rev. Lett. 99, 167602 (2007).

    Article  ADS  Google Scholar 

  21. R. K. Raman, Y. Murooka, C. Ruan, T. Yang, S. Berber, and D. Tománek, Phys. Rev. Lett. 101, 077401 (2008).

    Article  ADS  Google Scholar 

  22. Y. Miyamoto, H. Zhang, and D. Tomanek, Phys. Rev. Lett. 104, 208302 (2010).

    Article  ADS  Google Scholar 

  23. R. Nüske, C. von Korff Schmising, A. Jurgilaitis, H. Enquist, H. Navirian, P. Sondhauss, and J. Larsson, Rev. Sci. Instrum. 81, 013106 (2010).

    Article  ADS  Google Scholar 

  24. G. Sciani and R. J. D. Miller, Rep. Prog. Phys. 74, 096101 (2011).

    Article  ADS  Google Scholar 

  25. A. M. Lindenberg, S. Engemann, K. J. Gaffney, K. Sokolowski-Tinten, J. Larsson, P. B. Hillyard, D.A. Reis, D. M. Fritz, J. Arthur, R. A. Akre, M. J. George, A. Deb, P. H. Bucksbaum, J. Hajdu, D. A. Meyer, M. Nicoul, C. Blome, Th. Tschentscher, A. L. Cavalieri, R. W. Falcone, S. H. Lee, R. Pahl, J. Rudati, P. H. Fuoss, A. J. Nelson, P. Krejcik, D. P. Siddons, P. Lorazo, and J. B. Hastings, Phys. Rev. Lett. 100, 135502 (2008).

    Article  ADS  Google Scholar 

  26. F. Carbone, P. Baum, P. Rudolf, and A. H. Zewail, Phys. Rev. Lett. 100, 035501 (2008); F. Dorchies, A. Levy, C. Coyon, P. Combis, D. Descamps, C. Fourment, M. Harmand, S. Hulin, P. M. Leguay, S. Petit, O. Peyrusse, and J. J. Santos, Phys. Rev. Lett. 107, 245006 (2011).

    Article  ADS  Google Scholar 

  27. P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996).

    Google Scholar 

  28. L. Zhigilei, Z. Lin, and D. S. Ivanov, J. Phys. Chem. C 113, 11892 (2009).

    Article  Google Scholar 

  29. E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, Appl. Phys. A: Mater. Sci. Process. 79, 1643 (2004).

    ADS  Google Scholar 

  30. P. Lorazo, L. J. Lewis, and M. Meunier, Phys. Rev. B: Condens. Matter 73, 134108 (2006).

    Article  ADS  Google Scholar 

  31. A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, Phys. Rev. B: Condens. Matter 78, 045437 (2008).

    Article  ADS  Google Scholar 

  32. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, Phys. Rev. Lett. 87, 225701 (2001).

    Article  ADS  Google Scholar 

  33. H. Enquist, H. Navirian, T. N. Hansen, A. M. Lindenberg, P. Sondhauss, O. Synnergren, J. S. Wark, and J. Larsson, Phys. Rev. Lett. 98, 225502 (2007); M. Nicoul, V. Shymanovich, A. Tarasevich, D. von der Linde, and K. Sokolowski-Tinten, Appl. Phys. Lett. 98, 191902 (2011).

    Article  ADS  Google Scholar 

  34. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    Article  ADS  Google Scholar 

  35. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, and D. V. Sinitsyn, JETP Lett. 90(3), 181 (2009).

    Article  ADS  Google Scholar 

  36. D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, Appl. Surf. Sci. 109–110, 1 (1997).

    Article  Google Scholar 

  37. S. I. Kudryashov and V. I. Emel’yanov, JETP 94(1), 94 (2002).

    Article  ADS  Google Scholar 

  38. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, Orlando, Florida, United States, 1998).

    Google Scholar 

  39. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, JETP Lett. 94(1), 34 (2011).

    Article  ADS  Google Scholar 

  40. I. S. Grigoriev and E. Z. Meilikhov, Handbook of Physical Quantities (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).

    Google Scholar 

  41. K. M. Shvarev, B. A. Baum, and N. V. Gel’d, Sov. Phys. Solid State 16(11), 2111 (1974).

    Google Scholar 

  42. H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz, Phys. Rev. Lett. 60, 1438 (1988); K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, Phys. Rev. B: Condens. Matter 51, 14186 (1995).

    Article  ADS  Google Scholar 

  43. B. C. Gundrum, R. S. Averback, and D. G. Cahill, Appl. Phys. Lett. 91, 011906 (2007).

    Article  ADS  Google Scholar 

  44. S. L. Johnson, P. A. Heimann, A. M. Lindenberg, H. O. Jeschke, M. E. Garcia, Z. Chang, R. W. Lee, J. J. Rehr, and R. W. Falcone, Phys. Rev. Lett. 91, 157403 (2003).

    Article  ADS  Google Scholar 

  45. M. C. Downer and C. V. Shank, Phys. Rev. Lett. 56, 761 (1986); A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, J. Appl. Phys. 85, 3301 (1999).

    Article  ADS  Google Scholar 

  46. P. Yu. M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer-Verlag, Berlin, 1996; Fizmatlit, Moscow, 2002).

    MATH  Google Scholar 

  47. E. Yu. Tonkov, Phase Transformations of Elements under High Pressure (Metallurgiya, Moscow, 1988; CRC Press, Boca Raton, Florida, United States, 2004).

    Google Scholar 

  48. N. M. Keita and S. Steinemann, Phys. Lett. A 72, 153 (1979).

    Article  ADS  Google Scholar 

  49. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (Nauka, Moscow, 1991; American Institute of Physics, New York, 1993).

    Google Scholar 

  50. P. H. Bucksbaum and J. Bokor, Phys. Rev. Lett. 53, 182 (1984); K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, and D. von der Linde, Phys. Rev. B: Condens. Matter 58, R11805 (1998); W.-L. Chan, R. S. Averback, D. G. Cahill, and A. Lagoutchev, Phys. Rev. B: Condens. Matter 78, 214107 (2008).

    Article  ADS  Google Scholar 

  51. D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, J. Appl. Phys. 99, 083101 (2006).

    Article  ADS  Google Scholar 

  52. S. Lee, D. Yang, and S. Nikumb, Appl. Surf. Sci. 254, 2996 (2008).

    Article  ADS  Google Scholar 

  53. D. H. Reitze, T. R. Zhang, Wm. M. Wood, and M. C. Downer, J. Opt. Soc. Am. B 7(1), 84 (1990).

    Article  ADS  Google Scholar 

  54. K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B: Condens. Matter 61, 2648 (2000); M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, A. V. Ovchinnikov, P. S. Kondratenko, D. S. Sitnikov, and V. E. Fortov, JETP Lett. 83 (11), 501 (2006).

    Article  ADS  Google Scholar 

  55. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and Dietrich von der Linde, J. Opt. Soc. Am. B 23, 1954 (2006).

    Article  ADS  Google Scholar 

  56. V. V. Zhakhovskii, N. A. Inogamov, and K. Nishihara, JETP Lett. 87(8), 423 (2008).

    Article  ADS  Google Scholar 

  57. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, London, 1955).

    Google Scholar 

  58. B. Rethfeld, K. Sokolowski-Tinten, V. V. Temnov, S. I. Kudryashov, J. Bialkowski, A. Cavalleri, and D. von der Linde, Proc. SPIE-Int. Soc. Opt. Eng. 4423, 186 (2001).

    Article  ADS  Google Scholar 

  59. D. Batani, H. Stabile, A. Ravasio, G. Lucchini, F. Strati, T. Desai, J. Ullschmied, E. Krousky, J. Skala, L. Juha, B. Kralikova, M. Pfeifer, Ch. Kadlec, T. Mocek, A. Präg, H. Nishimura, and Y. Ochi, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 68, 067403 (2003).

    Article  Google Scholar 

  60. S. I. Kudryashov, A. A. Ionin, S. V. Makarov, N. N. Mel’nik, L. V. Seleznev, and D. V. Sinitsyn, AIP Conf. Proc. 1464, 244 (2012).

    Article  ADS  Google Scholar 

  61. S. I. Kudryashov, Proc. SPIE-Int. Soc. Opt. Eng. 5448, 1171 (2004).

    Article  ADS  Google Scholar 

  62. S. I. Kudryashov, M. Kandyla, C. Roeser, and E. Mazur, Phys. Rev. B: Condens. Matter 75, 085207 (2007).

    Article  ADS  Google Scholar 

  63. R. Taft and J. Stareck, J. Phys. Chem. 34, 2307 (1930).

    Article  Google Scholar 

  64. D. S. Ivanov and L. V. Zhigilei, Phys. Rev. Lett. 98, 195701 (2007).

    Article  ADS  Google Scholar 

  65. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, and S. I. Anisimov, Phys. Rev. B: Condens. Matter 65, 092103 (2002); X.-M. Bai and M. Li, Phys. Rev. B: Condens. Matter 77, 134109 (2008); G. Rastelli and E. Capelluti, Phys. Rev. B: Condens. Matter 84, 184305 (2011).

    Article  ADS  Google Scholar 

  66. S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Yu. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, JETP Lett. 95(4), 176 (2012).

    Article  ADS  Google Scholar 

  67. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, Phys. Rev. Lett. 81, 224 (1998).

    Article  ADS  Google Scholar 

  68. S. I. Kudryashov, Candidate’s Dissertation in Mathematical Physics (Moscow State University, Moscow, 1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kudryashov.

Additional information

Original Russian Text © A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, D.V. Sinitsyn, A.F. Bunkin, V.N. Lednev, S.M. Pershin, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 3, pp. 403–422.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionin, A.A., Kudryashov, S.I., Seleznev, L.V. et al. Thermal melting and ablation of silicon by femtosecond laser radiation. J. Exp. Theor. Phys. 116, 347–362 (2013). https://doi.org/10.1134/S106377611302012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611302012X

Keywords

Navigation