Skip to main content
Log in

Current switches based on asymmetric ferromagnet-superconductor nanostructures with allowance for a triplet channel in an external magnetic field

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze the properties of asymmetric three-layer (FSF and FFS) heterostructures consisting of a ferromagnet (F) and a superconductor (S) in an external magnetic field. The asymmetry of FS systems can be due to the difference in the parameters characterizing the F layers (in particular, noncollinearity of the magnetizations of the ferromagnets, leading to the generation of the long-range triplet component of the superconducting condensate). We consider the case of strong scattering of conduction electrons from non-magnetic impurities (the so-called dirty limit), for which we derive the equations for the pair amplitude and corresponding boundary conditions to these equations, which are valid in the presence of an external magnetic field. We discuss possible applications of these FS heterostructures as spin switches on the basis of analysis of their phase diagrams, and we give recommendations for determining the optimal parameters required for their stable operation. The occurrence of peculiar re-entrant superconductivity in the FFS systems on an increase of the external magnetic field is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. De Gennes, Rev. Mod. Phys. 36(1), 225 (1964).

    Article  ADS  Google Scholar 

  2. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. K. B. Efetov, I. A. Garifullin, A. F. Volkov, and K. Westerholt, in Magnetic Heterostructures (Springer-Verlag, Berlin, 2008), p. 251.

    Book  Google Scholar 

  4. A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1964).

    MathSciNet  Google Scholar 

  5. P. Fulde and R. Ferrell, Phys. Rev. A: At., Mol., Opt. Phys. 135, 550 (1964).

    Article  ADS  Google Scholar 

  6. Yu. A. Izyumov, Yu. N. Proshin, and M. G. Khusainov, Phys.—Usp. 45(2), 109 (2002).

    Article  ADS  Google Scholar 

  7. A. Buzdin, Rev. Mod. Phys. 77, 935 (2005).

    Article  ADS  Google Scholar 

  8. M. Khusainov and Y. Proshin, Phys. Rev. B: Condens. Matter 56, R14283 (1997).

    Article  ADS  Google Scholar 

  9. Yu. N. Proshin and M. G. Khusainov, J. Exp. Theor. Phys. 86(5), 930 (1998).

    Article  ADS  Google Scholar 

  10. I. A. Garifullin, D. A. Tikhonov, N. N. Garif’yanov, L. Lazar, Yu. V. Goryunov, S. Ya. Khlebnikov, L. R. Tagirov, K. Westerholt, and H. Zabel, Phys. Rev. B: Condens. Matter 66, 020505 (2002).

    Article  ADS  Google Scholar 

  11. V. Zdravkov, A. Sidorenko, G. Obermeier, S. Gsell, M. Schreck, C. Müller, S. Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. Lett. 97, 057004 (2006).

    Article  ADS  Google Scholar 

  12. M. G. Khusainov, M. M. Khusainov, N. Ivanov, and Yu. N. Proshin, JETP Lett. 90(5), 359 (2009).

    Article  ADS  Google Scholar 

  13. Y. Proshin, M. Khusainov, and M. Khusainov, Physica C (Amsterdam) 470, 874 (2010).

    Article  ADS  Google Scholar 

  14. Ya. V. Fominov, A. A. Golubov, and M. Yu. Kupriyanov, JETP Lett. 77(9), 510 (2003).

    Article  ADS  Google Scholar 

  15. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).

    Article  ADS  Google Scholar 

  16. M. Houzet and A. I. Buzdin, Phys. Rev. B: Condens. Matter 76, 060504 (2007).

    Article  ADS  Google Scholar 

  17. Ya. V. Fominov, A. A. Golubov, T. Yu. Karminskaya, M. Yu. Kupriyanov, R. G. Deminov, and L. R. Tagirov, JETP Lett. 91(6), 308 (2010).

    Article  ADS  Google Scholar 

  18. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett. 86, 4096 (2001).

    Article  ADS  Google Scholar 

  19. T. Champel and M. Eschrig, Phys. Rev. B: Condens. Matter 72, 054523 (2005).

    Article  ADS  Google Scholar 

  20. V. V. Ryazanov, V. A. Oboznov, A. S. Prokofiev, V. V. Bolginov, and A. K. Feofanov, J. Low Temp. Phys. 136, 385 (2004).

    Article  ADS  Google Scholar 

  21. A. A. Golubov, M. Yu. Kupriyanov, and E. Il’ichev, Rev. Mod. Phys. 76, 411 (2004).

    Article  ADS  Google Scholar 

  22. S. Oh, D. Youm, and M. Beasley, Appl. Phys. Lett. 71, 2376 (1997).

    Article  ADS  Google Scholar 

  23. L. R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999).

    Article  ADS  Google Scholar 

  24. A. I. Buzdin, A. V. Vedyayev, and N. V. Ryzhanova, Europhys. Lett. 48, 686 (1999).

    Article  ADS  Google Scholar 

  25. J. Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Ya. B. Baza- liy, and S. D. Bader, Phys. Rev. Lett. 89, 267001 (2002).

    Article  ADS  Google Scholar 

  26. A. Potenza and C. H. Marrows, Phys. Rev. B: Condens. Matter 71, 180503 (2005).

    Article  ADS  Google Scholar 

  27. K. Westerholt, D. Sprungmann, H. Zabel, R. Brucas, B. Hjörvarsson, D. A. Tikhonov, and I. A. Garifullin, Phys. Rev. Lett. 95, 097003 (2005).

    Article  ADS  Google Scholar 

  28. I. C. Moraru, W. P. Pratt, and N. O. Birge, Phys. Rev. Lett. 96, 037004 (2006).

    Article  ADS  Google Scholar 

  29. A. Y. Rusanov, S. Habraken, and J. Aarts, Phys. Rev. B: Condens. Matter 73, 060505 (2006).

    Article  ADS  Google Scholar 

  30. R. Steiner and P. Ziemann, Phys. Rev. B: Condens. Matter 74, 094504 (2006).

    Article  ADS  Google Scholar 

  31. I. C. Moraru, W. P. Pratt, and N. O. Birge, Phys. Rev. B: Condens. Matter 74, 220507 (2006).

    Article  ADS  Google Scholar 

  32. Y. Proshin, A. Zimin, N. Fazleev, and M. Khusainov, Phys. Rev. B: Condens. Matter 73, 184514 (2006).

    Article  ADS  Google Scholar 

  33. A. Singh, C. Sürgers, and H. V. Löhneysen, Phys. Rev. B: Condens. Matter 75, 024513 (2007).

    Article  ADS  Google Scholar 

  34. D. H. Kim and T. Hwang, Physica C (Amsterdam) 455, 58 (2007).

    Article  ADS  Google Scholar 

  35. G. Nowak, H. Zabel, K. Westerholt, I. Garifullin, M. Marcellini, A. Liebig, and B. Hjörvarsson, Phys. Rev. B: Condens. Matter 78, 134520 (2008).

    Article  ADS  Google Scholar 

  36. P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, J. Schumann, H. Vinzelberg, V. Kataev, R. Klingeler, O. G. Schmidt, and B. Büchner, Appl. Phys. Lett. 97, 102505 (2010).

    Article  ADS  Google Scholar 

  37. P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, Ya. V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, and B. Büchner, Phys. Rev. Lett. 109, 057005 (2012).

    Article  ADS  Google Scholar 

  38. Z. Radović, L. Dobrosavljević-Grujić, A. I. Buzdin, and J. R. Clem, Phys. Rev. B: Condens. Matter 38, 2388 (1988).

    Article  ADS  Google Scholar 

  39. B. Krunavakarn and S. Yoksan, Physica C (Amsterdam) 440, 25 (2006).

    Article  ADS  Google Scholar 

  40. M. Avdeev, M. Khusainov, Y. Proshin, and S. Tsarevskii, Solid State Phenom. 152, 462 (2009).

    Article  Google Scholar 

  41. M. Avdeev, M. Khusainov, Y. Proshin, and S. Tsarevskii, Supercond. Sci. Technol. 23, 105005 (2010).

    Article  ADS  Google Scholar 

  42. K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).

    Article  ADS  Google Scholar 

  43. M. Yu. Kupriyanov and V. F. Lukichev, Sov. Phys. JETP 67(6), 1163 (1988).

    Google Scholar 

  44. M. V. Avdeev, Yu. N. Proshin, M. G. Khusainov, and S. L. Tsarevskii, Phys. Met. Metallogr. 111(6), 537 (2011).

    Article  ADS  Google Scholar 

  45. V. L. Ginzburg, Sov. Phys. JETP 4, 153 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Proshin.

Additional information

Original Russian Text © M.V. Avdeev, Yu.N. Proshin, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 144, No. 6, pp. 1251–1259.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdeev, M.V., Proshin, Y.N. Current switches based on asymmetric ferromagnet-superconductor nanostructures with allowance for a triplet channel in an external magnetic field. J. Exp. Theor. Phys. 117, 1101–1108 (2013). https://doi.org/10.1134/S1063776113140082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113140082

Keywords

Navigation