Skip to main content
Log in

Raman spectroscopy of isotopically pure (12C, 13C) and isotopically mixed (12.5C) diamond single crystals at ultrahigh pressures

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Raman scattering by isotopically pure 12C and 13C diamond single crystals and by isotopically mixed 12.5C diamond single crystals is studied at a high accuracy. The studies are performed over a wide pressure range up to 73 GPa using helium as a hydrostatic pressure-transferring medium. It is found that the quantum effects, which determine the difference between the ratio of the Raman scattering frequencies in the 12C and 13C diamonds and the classical ratio (1.0408), increase to 30 GPa and then decrease. Thus, inversion in the sign of the quantum contribution to the physical properties of diamond during compression is detected. Our data suggest that the maximum possible difference between the bulk moduli of the 12C and 13C diamonds is 0.15%. The investigation of the isotopically mixed 12.5C diamond shows that the effective mass, which determines the Raman frequency, decreases during compression from 12.38 au at normal pressure to 12.33 au at 73 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Stishov, Phys. Usp. 44, 285 (2001).

    Article  ADS  Google Scholar 

  2. Yu. M. Tsipenyuk, Phys. Usp. 55, 796 (2012).

    Article  Google Scholar 

  3. M. Cardona and M. L. W. Thewalt, Rev. Mod. Phys. 77, 1173 (2005).

    Article  ADS  Google Scholar 

  4. H. Holloway, K. C. Hass, M. A. Tamor, T. R. Anthony, and W. F. Banholzer, Phys. Rev. B 44, 7123 (1991).

    Article  ADS  Google Scholar 

  5. T. Yamanaka, S. Morimoto, and H. Kanda, Phys. Rev. B 49, 9341 (1994).

    Article  ADS  Google Scholar 

  6. Ph. Gillet, G. Fiquet, I. Daniel, B. Reynard, and M. Hanfland, Phys. Rev. B 60, 14660 (1999).

    Article  ADS  Google Scholar 

  7. A. K. Ramdas, S. Rodriguez, M. Grimsditch, T. R. Anthony, and W. Banholzer, Phys. Rev. Lett. 71, 189 (1993).

    Article  ADS  Google Scholar 

  8. D. C. Hurley, R. S. Gilmore, and W. F. Banholzer, J. Appl. Phys. 76, 7726 (1994).

    Article  ADS  Google Scholar 

  9. R. Vogelgesang, A. K. Ramdas, S. Rodriguez, M. Grimsditch, and T. R. Anthony, Phys. Rev. B 54, 3989 (1996).

    Article  ADS  Google Scholar 

  10. M. Muinov, H. Kanda, and S. M. Stishov, Phys. Rev. B 50, 13860 (1994).

    Article  ADS  Google Scholar 

  11. Yu. A. Timofeev, B. V. Vinogradov, and S. M. Stishov, JETP Lett. 69, 227 (1999).

    Article  ADS  Google Scholar 

  12. F. Ocelli, P. Loubeyre, and R. le Toullec, Nature Mater. 2, 151 (2003).

    Article  ADS  Google Scholar 

  13. A. T. Collins, G. Davies, H. Kanda, and G. S. Woods, J. Phys. C 21, 1363 (1988).

    Article  ADS  Google Scholar 

  14. I. V. Aleksandrov, S. P. Besedin, I. N. Makarenko, and S. M. Stishov, Prib. Tekh. Eksp., No. 2, 136 (1994).

    Google Scholar 

  15. S. M. Stishov and A. F. Uvarov, Prib. Tekh. Eksp., No. 1, 218 (1971).

    Google Scholar 

  16. D. Schiferl, M. Nicol, J. M. Zaug, S. K. Sharma, T. F. Cooney, S.-Y. Wang, T. R. Anthony, and J. F. Fleisher, J. Appl. Phys. 82, 3256 (1997).

    Article  ADS  Google Scholar 

  17. I. V. Aleksandrov, A. F. Goncharov, A. N. Zisman, and S. M. Stishov, Sov. Phys. JETP 66, 384 (1987).

    Google Scholar 

  18. H. D. Fuchs, C. H. Grein, C. Thomsen, et al., Phys. Rev. B 43, 4835 (1991).

    Article  ADS  Google Scholar 

  19. D. T. Wang, A. Gobel, J. Zegenhagen, and M. Cardona, Phys. Rev. B 56, 13167 (1997).

    Article  ADS  Google Scholar 

  20. K. C. Hass, M. A. Tamor, T. R. Anthony, and W. F. Banholzer, Phys. Rev. B 45, 7171 (1992).

    Article  ADS  Google Scholar 

  21. F. Widulle, J. Serrano, and M. Cardona, Phys. Rev. B 65, 075206 (2002).

    Article  ADS  Google Scholar 

  22. A. F. Goncharov, I. N. Makarenko, and S. M. Stishov, JETP Lett. 41, 184 (1985).

    ADS  Google Scholar 

  23. M. Hanfland, K. Syassen, S. Fahy, S. G. Louie, and M. L. Cohen, Phys. Rev. B 31, 6896 (1985).

    Article  ADS  Google Scholar 

  24. H. Boppart, J. van Straaten, and I. F. Silvera, Phys. Rev. B 32, 1423 (1985).

    Article  ADS  Google Scholar 

  25. K. Kunc, I. Loa, and K. Syassen, Phys. Rev. B 68, 094107 (2003).

    Article  ADS  Google Scholar 

  26. M. I. Eremets, J. Raman Spectrosc. 34, 515 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Enkovich.

Additional information

Original Russian Text © P.V. Enkovich, V.V. Brazhkin, S.G. Lyapin, A.P. Novikov, H. Kanda, S.M. Stishov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 3, pp. 516–525.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enkovich, P.V., Brazhkin, V.V., Lyapin, S.G. et al. Raman spectroscopy of isotopically pure (12C, 13C) and isotopically mixed (12.5C) diamond single crystals at ultrahigh pressures. J. Exp. Theor. Phys. 123, 443–451 (2016). https://doi.org/10.1134/S1063776116070049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116070049

Navigation