Skip to main content
Log in

Supersonic N-Crowdions in a Two-Dimensional Morse Crystal

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An interstitial atom placed in a close-packed atomic row of a crystal is called crowdion. Such defects are highly mobile; they can move along the row, transferring mass and energy. We generalize the concept of a classical supersonic crowdion to an N-crowdion in which not one but N atoms move simultaneously with a high velocity. Using molecular dynamics simulations for a close-packed two-dimensional Morse crystal, we show that N-crowdions transfer mass much more efficiently, because they are capable of covering large distances while having a lower total energy than that of a classical 1-crowdion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Indenbom, JETP Lett. 12, 369 (1970).

    ADS  Google Scholar 

  2. V. V. Pokropivny, V. V. Skorokhod, and A. V. Pokropivny, Model. Simul. Mater. Sci. 5, 579 (1997).

    Article  ADS  Google Scholar 

  3. V. D. Natsik and S. N. Smirnov, Low Temp. Phys. 42, 207 (2016).

    Article  ADS  Google Scholar 

  4. M. Kiritani, J. Nucl. Mater. 276, 41 (2000).

    Article  ADS  Google Scholar 

  5. I. Salehinia and D. F. Bahr, Scripta Mater. 66, 339 (2012).

    Article  Google Scholar 

  6. V. G. Kononenko, V. V. Bogdanov, A. N. Turenko, M. A. Volosyuk, and A. V. Volosyuk, Probl. At. Sci. Technol. 104, 15 (2016).

    Google Scholar 

  7. A. Korbel and W. Bochniak, Int. J. Mech. Sci. 128, 269 (2017).

    Article  Google Scholar 

  8. H. Mehrer, Diffusion in Solids (Springer, Berlin, 2007).

    Book  Google Scholar 

  9. A. E. Sand, S. L. Dudarev, and K. Nordlund, Europhys. Lett. 103, 46003 (2013).

    Article  ADS  Google Scholar 

  10. X. Yi, M. L. Jenkins, K. Hattar, P. D. Edmondson, and S. G. Roberts, Acta Mater. 92, 163 (2015).

    Article  Google Scholar 

  11. Z. Zhang, K. Yabuuchi, and A. Kimura, J. Nucl. Mater. 480, 207 (2016).

    Article  ADS  Google Scholar 

  12. T. Koyanagi, N. A. P. K. Kumar, T. Hwang, L. M. Garrison, X. Hu, L. L. Snead, and Y. Katoh, J. Nucl. Mater. 490, 66 (2017).

    Article  ADS  Google Scholar 

  13. A. Xu, D. E. J. Armstrong, C. Beck, M. P. Moody, G. D. W. Smith, P. A. J. Bagot, and S. G. Roberts, Acta Mater. 124, 71 (2017).

    Article  Google Scholar 

  14. D. A. Terentyev, T. P. C. Klaver, P. Olsson, M.-C.Marinica, F. Willaime, C. Domain, and L. Malerba, Phys. Rev. Lett. 100, 145503 (2008).

    Article  ADS  Google Scholar 

  15. H. R. Paneth, Phys. Rev. 80, 708 (1950).

    Article  ADS  Google Scholar 

  16. P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev, Phys. Rev. B 76, 054107 (2007).

    Article  ADS  Google Scholar 

  17. A. M. Kosevich and A. S. Kovalev, Solid St. Commun. 12, 763 (1973).

    Article  ADS  Google Scholar 

  18. A. S. Davydov and A. V. Zolotariuk, Phys. Scr. 30, 426 (1984).

    Article  ADS  Google Scholar 

  19. J. F. R. Archilla, Y. A. Kosevich, N. Jimenez, V. J. Sanchez-Morcillo, and L. M. Garcia-Raffi, Phys. Rev. E 91, 022912 (2015).

    Article  ADS  Google Scholar 

  20. Yu. A. Kosevich, R. Khomeriki, and S. Ruffo, Europhys. Lett. 66, 21 (2004).

    Article  ADS  Google Scholar 

  21. Y. N. Osetsky, D. J. Bacon, and A. Serra, Philos. Mag. Lett. 79, 273 (1999).

    Article  Google Scholar 

  22. S. Han, L. A. Zepeda-Ruiz, G. J. Ackland, R. Car, and D. J. Srolovitz, Phys. Rev. B 66, 220101 (2002).

    Article  ADS  Google Scholar 

  23. H. Abe, N. Sekimura, and Y. Yang, J. Nucl. Mater. 323, 220 (2003).

    Article  ADS  Google Scholar 

  24. S. L. Dudarev, Phil. Mag. 83, 3577 (2003).

    Article  ADS  Google Scholar 

  25. Y. N. Osetsky, D. J. Bacon, A. Serra, B. N. Singh, and S. I. Golubov, Phil. Mag. 83, 61 (2003).

    Article  ADS  Google Scholar 

  26. D. A. Terentyev, L. Malerba, and M. Hou, Phys. Rev. B 75, 104108 (2007).

    Article  ADS  Google Scholar 

  27. W. H. Zhou, C. G. Zhang, Y. G. Li, and Z. Zeng, Sci. Rep. 4, 5096 (2014).

    Article  ADS  Google Scholar 

  28. W. H. Zhou, C. G. Zhang, Y. G. Li, and Z. Zeng, J. Nucl. Mater. 453, 202 (2014).

    Article  ADS  Google Scholar 

  29. J. F. R. Archilla, S. M. M. Coelho, F. D. Auret, V. I. Dubinko, and V. Hizhnyakov, Phys. D (Amsterdam, Neth.) 297, 56 (2015).

    Article  ADS  Google Scholar 

  30. F. M. Russell, Nature (London, U.K.) 217, 51 (1967).

    Article  ADS  Google Scholar 

  31. F. M. Russell, Phys. Lett. A 130, 489 (1988).

    Article  ADS  Google Scholar 

  32. F. Russell, Nucl. Tracks Radiat. Meas. 15, 41 (1988).

    Article  Google Scholar 

  33. D. Schlößer, K. Kroneberger, M. Schosnig, F. M. Russell, and K. O. Groeneveld, Radiat. Meas. 23, 209 (1994).

    Article  Google Scholar 

  34. F. M. Russell and J. C. Eilbeck, Europhys. Lett. 78, 10004 (2007).

    Article  ADS  Google Scholar 

  35. J. Bajars, J. C. Eilbeck, and B. Leimkuhler, Phys. D (Amsterdam, Neth.) 301–302, 8 (2015).

    Article  Google Scholar 

  36. J. Bajars, J. C. Eilbeck, and B. Leimkuhler, Springer Ser. Mater. Sci. 221, 35 (2015).

    Article  Google Scholar 

  37. J. L. Marin, F. M. Russell, and J. C. Eilbeck, Phys. Lett. A 281, 21 (2001).

    Article  ADS  Google Scholar 

  38. S. V. Dmitriev, E. A. Korznikova, J. A. Baimova, and M. G. Velarde, Phys. Usp. 59, 446 (2016).

    Article  ADS  Google Scholar 

  39. A. P. Chetverikov, W. Ebeling, and M. G. Velarde, Phys. D (Amsterdam, Neth.) 240, 1954 (2011).

    Article  ADS  Google Scholar 

  40. Yu. A. Kosevich, J. Phys.: Conf. Ser. 833, 012021 (2017).

    Google Scholar 

  41. B. B. Straumal, X. Sauvage, B. Baretzky, A. A. Mazilkin, and R. Z. Valiev, Scr. Mater. 70, 59 (2014).

    Article  Google Scholar 

  42. B. Straumal, A. Korneva, and P. Zieba, Arch. Civil Mech. Eng. 14, 242 (2014).

    Article  Google Scholar 

  43. B. B. Straumal, A. R. Kilmametov, Yu. O. Kucheev, K. I. Kolesnikov, A. Korneva, P. Ziéba, and B. Baretzky, JETP Lett. 100, 376 (2014).

    Article  ADS  Google Scholar 

  44. C. M. Cepeda-Jimenez, J. I. Beltran, A. Hernando, M. A. Garcia, F. Yndurain, A. Zhilyaev, and M. T. Perez-Prado, Acta Mater. 123, 206 (2017).

    Article  Google Scholar 

  45. C. Domain and A. Legris, Phil. Mag. 85, 569 (2005).

    Article  ADS  Google Scholar 

  46. G. Verite, C. Domain, C.-C. Fu, P. Gasca, A. Legris, and F. Willaime, Phys. Rev. B 87, 134108 (2013).

    Article  ADS  Google Scholar 

  47. Y.-H. Li, H.-B. Zhou, S. Jin, Y. Zhang, H. Deng, and G.-H. Lu, Nucl. Fusion 57, 046006 (2017).

    Article  ADS  Google Scholar 

  48. A. M. Iskandarov, N. N. Medvedev, P. V. Zakharov, and S. V. Dmitriev, Comput. Mater. Sci. 47, 429 (2009).

    Article  Google Scholar 

  49. R. I. Garber and A. I. Fedorenko, Sov. Phys. Usp. 7, 479 (1964).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Dmitriev.

Additional information

Original Russian Text © S.V. Dmitriev, E.A. Korznikova, A.P. Chetverikov, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 3, pp. 417–423.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, S.V., Korznikova, E.A. & Chetverikov, A.P. Supersonic N-Crowdions in a Two-Dimensional Morse Crystal. J. Exp. Theor. Phys. 126, 347–352 (2018). https://doi.org/10.1134/S1063776118030019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118030019

Navigation