Skip to main content
Log in

Mechanical Properties of Two-Dimensional sp2-Carbon Nanomaterials

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Graphene is a two-dimensional crystal in which sp2-hybridized carbon atoms have valence bonds with three neighbors. Theoretically, other two-dimensional carbon structures were predicted, in which each carbon atom has valence bonds with three neighbors. In this paper, the molecular dynamics method is used to analyze the mechanical properties and structural transformations of such materials under uniaxial and biaxial stretching. The dependences of the tensile membrane forces on the applied tensile strain are constructed, the limiting values of the membrane forces and strains are determined. The three structures studied differ in their density, and it could be expected that the strength of the structures should decrease with decreasing density. However, it turned out that such a correlation did not manifest itself in all cases: a less dense structure may turn out to be stronger due to the fact that all interatomic bonds in it turn out to be loaded more uniformly. The results can be useful in analyzing the potentialities of application of sp2-carbon membranes in various technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. Borlido, C. Steigemann, N. N. Lathiotakis, et al., 2D Mater. 4, 045009 (2017).

  2. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid St. 55, 1754 (2013).

    Article  ADS  Google Scholar 

  3. E. A. Belenkov, M. M. Brzhezinskaya, and V. A. Greshnyakov, Diamond Relat. Mater. 50, 9 (2014).

    Article  ADS  Google Scholar 

  4. E. A. Belenkov and V. A. Greshnyakov, J. Exp. Theor. Phys. 119, 101 (2014).

    Article  ADS  Google Scholar 

  5. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid St. 57, 2331 (2015).

    Article  ADS  Google Scholar 

  6. E. A. Belenkov and A. E. Kochengin, Phys. Solid State 57, 2126 (2015).

    Article  ADS  Google Scholar 

  7. E. A. Belenkov, V. V. Mavrinskii, T. E. Belenkova, and V. M. Chernov, J. Exp. Theor. Phys. 120, (2015).

  8. E. A. Belenkov and V. A. Greshnyakov, Phys. Sol. St. 58, 2145 (2016).

    Article  ADS  Google Scholar 

  9. V. A. Greshnyakov and E. A. Belenkov, Tech. Phys. 61, 1462 (2016).

    Article  Google Scholar 

  10. V. A. Greshnyakov and E. A. Belenkov, J. Exp. Theor. Phys. 124, 265 (2017).

    Article  ADS  Google Scholar 

  11. M. Li, Y. Zhang, Y. Jiang, et al., RSC Adv. 8, 15659 (2018).

    Article  Google Scholar 

  12. E. P. Degabriele, J. N. Grima-Cornish, D. Attard, et al., Phys. Status Solidi B 254, 1700380 (2017).

    Article  ADS  Google Scholar 

  13. J. Qu, H. Zhang, J. Li, et al., Carbon 120, 350 (2017).

    Article  Google Scholar 

  14. R. Majidi, Phys. E (Amsterdam, Neth.) 90, 189 (2017).

  15. S. Rouhi, Phys. B (Amsterdam, Neth.) 513, 29 (2017).

  16. S. Wang, Z. Fan, Y. Cui, et al., Carbon 111, 486 (2017).

    Article  Google Scholar 

  17. J. H. Kim, J. H. Jeong, N. Kim, et al., J. Phys. D: Appl. Phys. 52, 083001 (2019).

    Article  ADS  Google Scholar 

  18. Q. Guo, K. Kondoh, and S. M. Han, MRS Bull. 44, 40 (2019).

    Article  Google Scholar 

  19. I. A. Kinloch, J. Suhr, J. Lou, et al., Science (Washington, DC, U. S.) 362, 547 (2018).

    Article  ADS  Google Scholar 

  20. A. Idowu, B. Boesl, and A. Agarwal, Carbon 135, 52 (2018).

    Article  Google Scholar 

  21. Y. Zhang, Y.-J. Heo, Y.-R. Son, et al., Carbon 142, 445 (2019).

    Article  Google Scholar 

  22. B. Liu, A. W.-K. Law, and K. Zhou, J. Membrane Sci. 550, 554 (2018).

    Article  Google Scholar 

  23. A. Jilani, M. H. D. Othman, M. O. Ansari, et al., Environ. Chem. Lett. 16, 1301 (2018).

    Article  Google Scholar 

  24. R. I. Babicheva, S. V. Dmitriev, A. A. Kistanov, et al., IOP Conf. Ser. Mater. Sci. 447, 012053 (2018).

  25. M. Xue, H. Qiu, and W. Guo, Nanotechnology 24, 505720 (2013).

    Article  Google Scholar 

  26. Z. H. Ni, T. Yu, Y. H. Lu, et al., ACS Nano 2, 2301 (2008).

    Article  Google Scholar 

  27. G. Gui, J. Li, and J. Zhong, Phys. Rev. B 78, 075435 (2008).

    Article  ADS  Google Scholar 

  28. M. Chhikara, I. Gaponenko, P. Paruch, et al., 2D Mater. 4, 025081 (2017).

  29. L. Z. Khadeeva, S. V. Dmitriev, and Yu. S. Kivshar, JETP Lett. 94, 539 (2011).

    Article  ADS  Google Scholar 

  30. E. A. Korznikova, A. V. Savin, Yu. A. Baimova, S. V. Dmitriev, and R. R. Mulyukov, JETP Lett. 96, 222 (2012).

    Article  ADS  Google Scholar 

  31. K. Tada, T. Funatani, S. Konabe, et al., Jpn. J. Appl. Phys. 56, 025102 (2017).

    Article  ADS  Google Scholar 

  32. I. Evazzade, I. P. Lobzenko, E. A. Korznikova, et al., Phys. Rev. B 95, 035423 (2017).

    Article  ADS  Google Scholar 

  33. N. Wei, L. Xu, H.-Q. Wang, et al., Nanotechnology 22, 105705 (2011).

    Article  ADS  Google Scholar 

  34. R. Chellattoan and S. P. Sathian, Solid State Comm. 173, 1 (2013).

    Article  ADS  Google Scholar 

  35. H. Shen, Mol. Phys. 112, 2614 (2014).

    Article  ADS  Google Scholar 

  36. X. Wei, G. Guo, T. Ouyang, et al., J. Appl. Phys. 115, 154313 (2014).

    Article  ADS  Google Scholar 

  37. Y. A. Baimova, S. V. Dmitriev, A. V. Savin, et al., Phys. Sol. St. 54, 866 (2012).

    Article  ADS  Google Scholar 

  38. C. Si, Z. Sun, and F. Liu, Nanoscale 8, 3207 (2016).

    Article  ADS  Google Scholar 

  39. J. A. Baimova, S. V. Dmitriev, K. Zhou, et al., Phys. Rev. B 86, 035427 (2012).

    Article  ADS  Google Scholar 

  40. Q. Lu and R. Huang, Int. J. Appl. Mech. 1, 443 (2009).

    Article  Google Scholar 

  41. T. Zhang, X. Li, and H. Gao, Int. J. Fract. 196, 1 (2015).

    Article  Google Scholar 

  42. S. Suresh and J. Li, Nature (London, U.K.) 456, 716 (2008).

    Article  ADS  Google Scholar 

  43. P. Hess, Phys. Chem. Chem. Phys. 20, 7604 (2018).

    Article  Google Scholar 

  44. K. S. Grishakov, K. P. Katin, V. S. Prudkovskiy, et al., Appl. Surf. Sci. 463, 1051 (2019).

    Article  ADS  Google Scholar 

  45. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  46. S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).

    Article  ADS  Google Scholar 

  47. J. Zhao, N. Wei, Z. Fan, et al., Nanotechnology 24, 095702 (2013).

    Article  ADS  Google Scholar 

  48. S. Wang, Z. Fan, Y. Cui, et al., Carbon 111, 486 (2017).

    Article  Google Scholar 

  49. S. Wang, Y. Si, J. Yuan, et al., Phys. Chem. Chem. Phys. 18, 24210 (2016).

    Article  Google Scholar 

  50. Y.-Y. Zhang, Q.-X. Pei, Y.-W. Mai, et al., J. Phys. D: Appl. Phys. 47, 425301 (2014).

    Article  Google Scholar 

  51. F. Ma, Y. J. Sun, D. Y. Ma, et al., Acta Mater. 59, 6783 (2011).

    Article  Google Scholar 

  52. Y. J. Sun, Y. H. Huang, F. Ma, et al., Mater. Sci. Eng. B 180, 1 (2014).

    Article  Google Scholar 

  53. Y. J. Sun, F. Ma, Y. H. Huang, et al., Appl. Phys. Lett. 103, 191906 (2013).

    Article  ADS  Google Scholar 

  54. Z. Yang, Y. Huang, F. Ma, et al., RSC Adv. 5, 105194 (2015).

    Article  Google Scholar 

  55. I. Evazzade, I. P. Lobzenko, D. Saadatmand, et al., Nanotechnology 29, 215704 (2018).

    Article  ADS  Google Scholar 

  56. A. V. Savin, I. P. Kikot, M. A. Mazo, et al., Proc. Natl. Acad. Sci. U.S.A. 110, 2816 (2013).

    Article  ADS  Google Scholar 

  57. R. I. Babicheva, K. A. Bukreeva, S. V. Dmitriev, et al., Intermetallics 43, 171 (2013).

    Article  Google Scholar 

  58. K. A. Bukreeva, R. I. Babicheva, S. V. Dmitriev, et al., Phys. Sol. St. 55, 1963 (2013).

    Article  ADS  Google Scholar 

  59. K. A. Bukreeva, R. I. Babicheva, A. B. Sultanguzhina, et al., Phys. Sol. St. 56, 1157 (2014).

    Article  ADS  Google Scholar 

  60. K. A. Bukreeva, R. I. Babicheva, S. V. Dmitriev, K. Zhou, and R. R. Mulyukov, JETP Lett. 98, 91 (2013).

    Article  ADS  Google Scholar 

  61. V. K. Sutrakar and D. R. Mahapatra, Intermetallics 18, 679 (2010).

    Article  Google Scholar 

  62. V. K. Sutrakar and D. R. Mahapatra, Intermetallics 18, 1565 (2010).

    Article  Google Scholar 

  63. E. Ganz, A. B. Ganz, L.-M. Yang, and M. Dornfeld, Phys. Chem. Chem. Phys. 19, 3756 (2017).

    Article  Google Scholar 

Download references

Funding

The work of R.I.B. and E.A.K. (performing simulations and discussion of results) was supported by project no. 18-32-20158 from the Russian Foundation for Basic Research, S.V.D. (discussion of numerical results, writing an article) was supported by project no. 17-02-00984 from Russian Foundation for Basic Research . This work was carried out in part under the state assignment no. АААА-А17-117041310220-8 of the Institute of Metal Superplasticity Problems, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Babicheva.

Additional information

Translated by A. Zeigarnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babicheva, R.I., Dmitriev, S.V., Korznikova, E.A. et al. Mechanical Properties of Two-Dimensional sp2-Carbon Nanomaterials. J. Exp. Theor. Phys. 129, 66–71 (2019). https://doi.org/10.1134/S1063776119070021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119070021

Navigation