Skip to main content
Log in

On the Structure and Intensity of Vortex in RF Inductively Coupled Argon Plasma

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Numerical simulation of a specific technical RF inductively coupled argon plasma with three coils, discharge current in the range of Jcoil = 100–250 A, and generator frequency 3 MHz is presented. The temperature, pressure, and velocity fields are obtained under different discharge currents and different flow rates of central gas. A reversed flow (vortex) is found between the injected cool gas and high-temperature plasma-forming gas. The formation mechanisms of such a vortex and the influence of the discharge current and flow rate of central gas on the vortex structure and intensity are studied. Special attention is paid to investigating two different kinds of vortex flow patterns—Benard and toroidal. A critical flow rate of central gas above which the flow pattern would transform from Benard to toroidal is determined and approximated as a function of the discharge current by theoretical calculations and numerical simulations. The maximum negative velocities along the axis in the vortex zone are also determined under different discharge currents and different flow rates of central gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Aktekin, G. Çakmak, and T. Öztürk, Int. J. Hydrogen Energ. 39, 9859 (2014).

    Article  Google Scholar 

  2. I. N. Novikov and A. M. Kruchinin, Tech. Phys. Lett. 40, 920 (2014).

    Article  ADS  Google Scholar 

  3. Yu. M. Grishin, N. P. Kozlov, and A. S. Skryabin, High Temp. 50, 459 (2012).

    Article  Google Scholar 

  4. J. Jeong and F. Hussain, J. Fluid Mech. 285, 69 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Jankun-Kelly, M. Jiang, D. Thompson, and R. Machiraju, IEEE Trans. Visual. Comput. Graph. 12, 957 (2006).

    Article  Google Scholar 

  6. V. Colombo, E. Ghedini, M. Gherardi, and P. Sanibondi, Plasma Sources Sci. Technol. 22, 035010 (2013).

    Article  ADS  Google Scholar 

  7. N. Y. Mendoza Gonzalez, M. El Morsli, and P. Proulx, J. Therm. Spray Technol. 17, 533 (2008).

    Article  ADS  Google Scholar 

  8. M. I. Boulos, P. Fauchais, and E. Pfender, Handbook of Thermal Plasma (Springer, Switzerland, 2016).

    Google Scholar 

  9. J. D. Chase, J. Appl. Phys. 40, 318 (1969).

    Article  ADS  Google Scholar 

  10. J. D. Chase, J. Appl. Phys. 42, 4870 (1971).

    Article  ADS  Google Scholar 

  11. S. V. Dresvin and V. S. Klubnikin, High Temp. 13, 439 (1975).

    Google Scholar 

  12. Yu. M. Grishin and L. Miao, Prikl. Fiz., No. 3, 31 (2017).

    Google Scholar 

  13. M. I. Boulos, Pure Appl. Chem. 57, 1321 (1985).

    Article  Google Scholar 

  14. Yu. M. Grishin and L. Miao, Prikl. Fiz., No. 4, 33 (2016).

    Google Scholar 

  15. T. G. Akhmetov, J. Appl. Mech. Tech. Phys. 49, 909 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  16. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

    Google Scholar 

  17. D. V. Gravelle, M. Beaulieu, M. I. Boulos, and A. Gleizes, J. Phys. D 22, 1471 (1989).

    Article  ADS  Google Scholar 

  18. R. M. Barnes and R. G. Schleicher, Spectrochim. Acta B 36, 81 (1981).

    Article  ADS  Google Scholar 

  19. E. F. Holik III, M.S. Thesis (Texas A&M University, Texas, 2008).

    Google Scholar 

  20. S. V. Dresvin, Fundamentals of Theory and Calculation of RF Inductively Coupled Plasma Torches (Energoatomizdat, Leningrad, 1992) [in Russian].

    Google Scholar 

  21. M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas: Fundamentals and Applications (Plenum, New York, 1994), Vol. 1.

    Book  Google Scholar 

  22. H. Lindner, A. Murtazin, S. Groh, K. Niemax, and A. Bogaerts. Anal. Chem. 83, 9260 (2011).

    Article  Google Scholar 

  23. Yu. M. Grishin and L. Miao, Prikl. Fiz., No. 2, 15 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Miao.

Additional information

Published in Russian in Fizika Plazmy, 2018, Vol. 44, No. 11, pp. 875–881.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, L., Grishin, Y.M. On the Structure and Intensity of Vortex in RF Inductively Coupled Argon Plasma. Plasma Phys. Rep. 44, 1019–1025 (2018). https://doi.org/10.1134/S1063780X18110077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18110077

Navigation