Skip to main content
Log in

Effect of oxygen vacancies on adhesion at the Nb/Al2O3 and Ni/ZrO2 interfaces

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The atomic and electronic structures of the Nb/Al2O3(0001) and Ni/ZrO2(001) interfaces are calculated using density-functional theory. The formation energy of oxygen vacancies is estimated in bulk materials and in surface layers and interfaces for different uppermost atomic layers of oxide surfaces. The work of separation of metal films from oxide surfaces is determined. The effect of oxygen vacancies on the bonding of transition metals to atoms of a substrate determining adhesion at the metal-oxide interfaces is discussed. It is shown that the Nb(Ni)-O interaction at the interfaces weakens in the presence of surface oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Finnis, J. Phys.: Condens. Matter 8, 5811 (1996).

    Article  ADS  Google Scholar 

  2. I. Batirev, A. Alavi, and M. Finnis, Phys. Rev. Lett. 82, 1510 (1999).

    Article  ADS  Google Scholar 

  3. W. Zhang and J. R. Smith, Phys. Rev. B: Condens. Matter 61, 16883 (2000).

    Google Scholar 

  4. A. Cristensen and E. A. Carter, Phys. Rev. B: Condens. Matter 58, 8050 (1998).

    Article  ADS  Google Scholar 

  5. J. I. Beltrán, S. Gallego, J. Cerdá, and M. C. Muñoz, Phys. Rev. B: Condens. Matter 68, 075401 (2003).

    Google Scholar 

  6. N. Lopez, F. Illas, N. Rösch, and G. Pacchioni, J. Chem. Phys. 110, 4873 (1999).

    Article  ADS  Google Scholar 

  7. A. Stashans, E. Kotomin, and J. L. Calais, Phys. Rev. B: Condens. Matter 49, 14854 (1994).

    Google Scholar 

  8. Y. N. Xu, Z. Q. Gu, X. F. Zhang, and W. Y. Ching, Phys. Rev. B: Condens. Matter 56, 7277 (1997).

    Article  ADS  Google Scholar 

  9. J. Carrasco, J. R. B. Gomes, and F. Illas, Phys. Rev. B: Condens. Matter 69, 064116 (2004).

    Google Scholar 

  10. S. E. Kul’kova, L. Yu. Zagorskaya, and I. R. Shein, Izv. Vyssh. Uchebn. Zaved., No. 11, 20 (2005).

  11. S. E. Kulkova, S. V. Eremeev, and S. S. Kulkov, Phys. Low-Dimens. Struct., No. 1, 11 (2006).

  12. H. P. Pinto, R. M. Nieminen, and S. D. Elliott, Phys. Rev. D: Part. Fields 70, 125402 (2004).

    Google Scholar 

  13. H. Wawra, Z. Metallkd. 66, 395 (1975).

    Google Scholar 

  14. H. J. Wollenberger, in Physical Metallurgy, Ed. by R. W. Cahn and P. Hassen, 4th ed. (Elsevier, Amsterdam, 1996), Chap. 18.

    Google Scholar 

  15. H. Y. Affefy, J. F. Liebman, and S. E. Stein, in NIST Chemistry WebBook. NIST Standard Reference Database Number 69, Ed. by W. G. Mallard and P. J. Linstrom (National Institute of Standards and Technology, Gaithersburg, MD, 2000); http://webbok.nist.gov.

    Google Scholar 

  16. P. E. Blochl, Phys. Rev. B: Condens. Matter 50, 17953 (1994).

    Google Scholar 

  17. J. Hutter et al., Computer Code CPMD (IBM Zurich Research Laboratory and MPI für Festkörperforschung, 1995–2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Kul’kova.

Additional information

Original Russian Text © S.V. Eremeev, L.Yu. Nemirovich-Danchenko, S.E. Kul’kova, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 3, pp. 523–532.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremeev, S.V., Nemirovich-Danchenko, L.Y. & Kul’kova, S.E. Effect of oxygen vacancies on adhesion at the Nb/Al2O3 and Ni/ZrO2 interfaces. Phys. Solid State 50, 543–552 (2008). https://doi.org/10.1134/S1063783408030256

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408030256

PACS numbers

Navigation