Skip to main content
Log in

Size effect of the thermal expansion of nanostructural copper oxide

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature dependence of the thermal expansion ΔL/L of samples of high-density nanostructural CuO ceramics with a crystallite size of 20, 70, and 90 nm was measured. The nanoceramics were obtained from coarse-grained CuO powders under converging spherical shock waves. It is found that, at temperatures T > 50 K, the thermal expansion coefficient α(T) of the nanoceramic samples increases with decreasing crystallite sizes and exceeds the value of α(T) of the CuO single crystal by a factor of 3.5 to 4.5. At temperatures T < 50 K, regions with zero and negative values of α(T) were revealed. The possible reasons for the increase in the thermal expansion coefficient of nanoceramics based on 3d-metal oxides are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev, Nanocrystalline Materials: Methods of Production and Properties (Ural Division, Russian Academy of Sciences, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  2. E. A. Kozlov, E. V. Abakshin, and V. I. Tarzhanov, RF Patent No. 2124716 (1997).

  3. B. A. Gizhevsky, E. A. Kozlov, A. E. Ermakov, N. V. Lukin, S. V. Naumov, A. A. Samokhvalov, V. L. Arbuzov, K. V. Shalnov, and M. V. Degtyarev, Fiz. Met. Metalloved. 92(2), 52 (2001) [Phys. Met. Metallogr. 92 (2), 153 (2001)].

    Google Scholar 

  4. I. B. Krynetskiĭ, A. S. Moskvin, S. V. Naumov, and A. A. Samokhvalov, Pis’ma Zh. Éksp. Teor. Fiz. 56(11), 584 (1992) [JETP Lett. 56 (11), 566 (1992)].

    Google Scholar 

  5. R. Bimger and H. Gleiter, in Encyclopedia of Materials Science and Engineering, Ed. by R. W. Cahn (Pergamon, Oxford, 1988), Suppl. Vol. 1, p. 339.

    Google Scholar 

  6. H. J. Klam, H. Hahm, and H. Gleiter, Acta Metall. 35, 2101 (1987).

    Article  Google Scholar 

  7. Y. Y. Chen, Y. D. Vao, B. T. Lin, C. T. Suo, S. G. Shui, and H. M. Lin, Nanostruct. Mater. 6, 997 (1995).

    Article  Google Scholar 

  8. A. P. Druzhkov, B. A. Gizhevskii, V. L. Arbuzov, E. A. Kozlov, K. V. Shalnov, and D. A. Perminov, J. Phys.: Condens. Matter 14, 7981 (2002).

    Article  ADS  Google Scholar 

  9. V. I. Voronin, L. Z. Akhtyamova, I. F. Berger, B. A. Gizhevskii, S. V. Naumov, Y. G. Chukalkin, and B. N. Goshchitskii, in Abstract Book of the 3rd European Conference on Neutron Scattering (ECNS-2003), (Montpellier, France, 2003), p. 80.

  10. J. B. Forsyth, P. J. Brown, and B. M. Wanklyn, J. Phys. C: Solid State Phys. 21, 2917 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Gizhevskiĭ.

Additional information

Original Russian Text © I.B. Krynetskiĭ, B.A. Gizhevskiĭ, S.V. Naumov, E.A. Kozlov, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 4, pp. 723–725.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krynetskiĭ, I.B., Gizhevskiĭ, B.A., Naumov, S.V. et al. Size effect of the thermal expansion of nanostructural copper oxide. Phys. Solid State 50, 756–758 (2008). https://doi.org/10.1134/S1063783408040264

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408040264

PACS numbers

Navigation