Skip to main content
Log in

Nanoscopic size effects on martensitic transformations in shape memory alloys

  • Lattice Dynamics and Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of the grain size and transverse film size in nano-and micrometer ranges on the parameters of martensitic transitions in shape memory alloys is theoretically considered in the framework of the theory of diffuse martensitic transitions. A quantitative analysis of the size effects is performed including not only the thermodynamic aspect of the martensitic transformation but also its kinetic aspect, which is particularly sensitive to structural and size factors. This complex approach makes it possible to explain the following three basic facts associated with the influence of a decreased grain size or transverse film size on the parameters of the martensitic transition in shape memory alloys: a decrease in the critical (characteristic) transition temperature, an increase in the transition temperature smearing, and the existence of a critical grain size or film thickness below which the martensitic transformation in alloys is blocked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. K. Akdogan, M. R. Leonard, and A. Safari, in Handbook of Low and High Dielectric Constants Materials and Their Applications, Ed. by H. S. Nalwa (Academic, San Diego, 1999), Vol. 2, p. 61.

    Chapter  Google Scholar 

  2. T. M. Kamel, and G. de With, J. Eur. Ceram. Soc. 28, 851 (2008).

    Article  Google Scholar 

  3. V. A. Chernenko, R. Lopez Anton, M. Kohl, J. M. Barandiaran, M. Ohtsuka, I. Orue, and S. Besseghini, Acta Mater. 54, 5461 (2006).

    Article  Google Scholar 

  4. Y. Chen, G. Deng, H. Lu, and J. Wang, Jpn. J. Appl. Phys. 34, 113 (1995).

    Article  Google Scholar 

  5. M. Unemoto and W. S. Owen, Metall. Trans. A 5, 2041 (1974).

    Article  ADS  Google Scholar 

  6. I. Dvorak and E. B. Hawbolt, Metall. Trans. A 6, 95 (1975).

    Article  Google Scholar 

  7. P. J. Brofman and G. S. Ansell, Metall. Trans. A 14, 1929 (1983).

    Article  Google Scholar 

  8. T. Kuninori, E. Sukedai, and H. Hashimoto, Mater Trans., JIM 37, 1404 (1996).

    Google Scholar 

  9. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 43(7), 1286 (2001) [Phys. Solid State 43 (7), 1339 (2001)].

    Google Scholar 

  10. V. A. Lobodyuk, Fiz. Met. Metalloved. 99(2), 29 (2005) [Phys. Met. Metallogr. 99 (2), 143 (2005)].

    Google Scholar 

  11. A. Garcia-Junceda, C. Capdevila, F.G. Caballero, and C. Garcia de Andrés, Scr. Mater. 58, 134 (2008).

    Article  Google Scholar 

  12. T. Suzuki, M. Shimono, and M. Wuttig, Scr. Mater. 44, 1979 (2001).

    Google Scholar 

  13. Q. Meng, N. Zhou, Y. H. Rong, S. Chen, T. Y. Hsu, and X. Zuyao, Acta Mater. 50, 4563 (2002).

    Article  Google Scholar 

  14. D. Wan and K. Komvohoulos, J. Mater. Res. 20, 1606 (2005).

    Article  ADS  Google Scholar 

  15. S. Kajivara, S. Ohno, and K. Honma, Philos. Mag. A 63, 625 (1991).

    Article  ADS  Google Scholar 

  16. R. E. Cech and D. Turnbull, Trans. Am. Inst. Min., Metall. Pet. Eng. 206, 124 (1956).

    Google Scholar 

  17. X. Q. Zhao and B. X. Liu, Scr. Mater. 38, 1137 (1998).

    Article  Google Scholar 

  18. H. B. Wang and X. C. Wu, www.scientific.net. Materials Science and Engineering: Phenomenological Study of the Size Effect on Martensitic Transformation in Nanograined Powders.

  19. A. M. Glezer, E. N. Blinova, and V. A. Pozdnyakov, Izv. Akad. Nauk, Ser. Fiz. 66, 1263 (2002).

    Google Scholar 

  20. R. C. Pond, X. Ma, and J. P. Hirth, Mater. Sci. Eng., A 438–440, 109 (2006).

    Google Scholar 

  21. G. A. Malygin, Usp. Fiz. Nauk 171(2), 187 (2001) [Phys.—Usp. 44 (2), 173 (2001)].

    Article  Google Scholar 

  22. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 42(8), 1469 (2000) [Phys. Solid State 42 (8), 1512 (2000)].

    Google Scholar 

  23. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 43(10), 1911 (2001) [Phys. Solid State 43 (10), 1989 (2001)].

    Google Scholar 

  24. W. Kanzig, Ferroelectrics and Antiferroelectrics (Academic, New York, 1957; Inostrannaya Literatura, Moscow, 1960).

    Google Scholar 

  25. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pretransition Phenomena and Martensitic Transformations (Ural Division of the Russian Academy of Sciences, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  26. A. Zheludev, S. M. Shapiro, P. Wochner, and L. E. Tanner, Phys. Rev. B: Condens. Matter 54, 15045 (1996).

    ADS  Google Scholar 

  27. R. Oshima, M. Sugiyama, and F. E. Fujita, Metall. Trans. A 19, 803 (1988).

    Google Scholar 

  28. J. X. Zhang, L. C. Zhao, Y. E. Zheng, and Y. C. Luo, Acta Mater. 47, 3497 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Malygin.

Additional information

Original Russian Text © G.A. Malygin, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 8, pp. 1480–1485.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malygin, G.A. Nanoscopic size effects on martensitic transformations in shape memory alloys. Phys. Solid State 50, 1538–1543 (2008). https://doi.org/10.1134/S1063783408080258

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408080258

PACS numbers

Navigation