Skip to main content
Log in

Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A Review

  • Reviews
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper presents a review devoted to the specific mechanical behavior of thin near-surface layers of various solids, materials, films, and multilayer coatings under local loading. Analysis is made of the principles, techniques, and instruments used for testing and determining mechanical properties of materials on a nanoscale, which, in recent years, have found a wide application under the general name “nanoindentation.” Information capabilities of this large and multifunctional family of methods employed for mechanical tests are discussed. Different aspects and specific features of the behavior of solids under severely constrained deformation caused by the local application of a microload to the surface of the test object are considered. Special attention is focused on the physical mechanisms of deformation and fracture under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Springer Handbook of Nanotechnology, Ed. B. Bhushan (Springer, Berlin, 2007).

    Google Scholar 

  2. A. D. Romig, Jr., M. T. Dugger, and P. J. McWhorter, Acta Mater. 51, 5837 (2003).

    Article  Google Scholar 

  3. Yu. I. Golovin, Introduction to Nanotechnology (Mashinostroenie, Moscow, 2007) [in Russian].

    Google Scholar 

  4. P. Grodzinski, Plastics (London) 18, 312 (1953).

    Google Scholar 

  5. A. P. Ternovskiĭ, V. P. Alekhin, M. Kh. Shorshorov, M. M. Khrushchev, and V. N. Skvortsov, Zavod. Lab. 39, 1242 (1973).

    Google Scholar 

  6. S. I. Bulychev, V. P. Alekhin, M. Kh. Shorshorov, A. P. Ternovskiĭ, and G. D. Shnyrev, Zavod. Lab. 41, 1137 (1975).

    Google Scholar 

  7. J. B. Pethica, R. Hutchings, and W. C. Oliver, Philos. Mag. 48, 593 (1983).

    Article  ADS  Google Scholar 

  8. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  ADS  Google Scholar 

  9. J. S. Field and M. V. Swain, J. Mater. Res. 8, 297 (1993).

    Article  ADS  Google Scholar 

  10. W. C. Oliver and G. M. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  ADS  Google Scholar 

  11. A. C. Fischer-Cripps, Surf. Coat. Technol. 200, 4153 (2006).

    Article  Google Scholar 

  12. A. C. Fischer-Cripps, Nanoindentation (Springer, New York, 2002).

    Google Scholar 

  13. M. R. VanLandingham, J. Res. Natl. Inst. Stand. Technol. 108, 249 (2003).

    Google Scholar 

  14. B. Wolf and A. Richter, New. J. Phys. 5, 15 (2003).

    Article  ADS  Google Scholar 

  15. Y.-T. Chen and C.-M. Chen, Mater. Sci. Eng., R 44, 91 (2004).

    Article  Google Scholar 

  16. C. A. Schuh, Mater. Today 9, 32 (2006).

    Article  Google Scholar 

  17. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A. M. Miron, and Y.-L. Shen, Acta Mater. 55, 4015 (2007).

    Article  Google Scholar 

  18. S. A. Fedosov and L. Peshek, Determination of the Mechanical Properties of Materials by Microindentation: Modern Foreign Techniques (Moscow State University, Moscow, 2004) [in Russian].

    Google Scholar 

  19. S. I. Bulychev and V. P. Alekhin, Testing of Materials under Continuous Indentation (Mashinostroenie, Moscow, 1990) [in Russian].

    Google Scholar 

  20. S. N. Dub and N. V. Novikov, Sverkhtverd. Mater., No. 6, 16 (2004).

  21. Yu. I. Golovin, S. N. Dub, V. I. Ivolgin, V. V. Korenkov, and A. I. Tyurin, Fiz. Tverd. Tela (St. Petersburg) 47(6), 961 (2005) [Phys. Solid State 47 (6), 995 (2005)].

    Google Scholar 

  22. S. I. Bulychev and V. P. Alekhin, Zavod. Lab. 53, 76 (1987).

    Google Scholar 

  23. Handbook of Nanostructured Materials and Nanotechnology, Ed. by H. S. Nalwa (Academic, San Diego, CA, United States, 1999), Vols. 1–5.

    Google Scholar 

  24. H. Gleiter, Acta Mater. 48, 1 (2000).

    Article  Google Scholar 

  25. R. A. Andrievskiĭ and A. V. Ragulya, Nanostructured Materials (Akademiya, Moscow, 2005) [in Russian].

    Google Scholar 

  26. Nanostructured Materials: Processing, Properties, and Applications, Ed. by C. C. Koch (William Andrews, New York, 2002).

    Google Scholar 

  27. M. Yu. Gutkin and I. A. Ovid’ko, in Physical Mechanics of Deformed Nanostructures (Yanus, St. Petersburg, 2003), Vol. 1 [in Russian]; Physical Mechanics of Deformed Nanostructures (Yanus, St. Petersburg, 2005), Vol. 2 [in Russian].

    Google Scholar 

  28. A. M. Glezer, I. E. Permyakova, V. E. Gromov, and V. V. Kovalenko, Mechanical Behavior of Amorphous Alloys (Siberian State Industrial University, Novokuznetsk, 2006) [in Russian].

    Google Scholar 

  29. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  30. H. van Swygenhoven and J. R. Weertman, Mater. Today 9, 24 (2006).

    Article  Google Scholar 

  31. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  32. C. A. Shuh, T. C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067 (2007).

    Article  Google Scholar 

  33. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 49(6), 961 (2007) [Phys. Solid State 49 (6), 1013 (2007)].

    Google Scholar 

  34. S. N. Dub, N. V. Novikov, and Yu. V. Mil’man, Sverkhtverd. Mater., No. 3, 31 (2005).

  35. W. Wang and K. Lu, Philos. Mag. 86, 5309 (2006).

    Article  ADS  Google Scholar 

  36. V. I. Kushch, S. N. Dub, and P. M. Litvin, Sverkhtverd. Mater., No. 4, 40 (2007).

  37. Yu. I. Golovin and S. N. Dub, Dokl. Akad. Nauk 393(1–3), 180 (2003) [Dokl. Phys. 48 (11), 612 (2003)].

    MATH  Google Scholar 

  38. B. N. Lucas, W. C. Oliver, and J. E. Swindeman, Mater. Res. Soc. Symp. Proc. 522, 3 (1998).

    Google Scholar 

  39. S. Basu, A. Moseson, and M. Barsoum, J. Mater. Res. 21, 2628 (2006).

    Article  ADS  Google Scholar 

  40. S. A. S. Asif, K. J. Wahl, R. J. Colton, and O. L. Warren, J. Appl. Phys. 90, 1192 (2001).

    Article  ADS  Google Scholar 

  41. N. Gane and F. P. Bowden, J. Appl. Phys. 39, 1432 (1968).

    Article  ADS  Google Scholar 

  42. J. B. Pethica and D. Tabor, Surf. Sci. 89, 182 (1979).

    Article  ADS  Google Scholar 

  43. M. D. Pashley and D. Tabor, Vacuum 31, 619 (1981).

    Article  Google Scholar 

  44. D. E. Kramer, K. B. Yoder, and W. W. Gerberich, Philos. Mag. A 81, 2033 (2001).

    Article  ADS  Google Scholar 

  45. J. Li, K. J. van Vliet, T. Thu, S. Yip, and S. Suresh, Nature (London) 418, 307 (2002).

    Article  ADS  Google Scholar 

  46. K. J. van Vliet, J. Li, T. Thu, S. Yip, and S. Suresh, Phys. Rev. B: Condens. Matter 67, 104105 (2003).

    ADS  Google Scholar 

  47. C. A. Schuh and A. C. Lund, J. Mater. Res. 19, 2152 (2004).

    Article  ADS  Google Scholar 

  48. A. M. Minor, E. T. Lilleoden, E. A. Stach, and J. W. Morris, Jr., J. Mater. Res. 19, 176 (2004).

    Article  ADS  Google Scholar 

  49. C. A. Schuh, J. K. Masson, and A. C. Lund, Nature (London) Mater. 4, 617 (2005).

    Article  ADS  Google Scholar 

  50. H. Li, A. H. W. Ngan, and M. G. Wang, J. Mater. Res. 20, 3072 (2005).

    Article  ADS  Google Scholar 

  51. S. G. Corcoran, R. Y. Colton, E. T. Lilleoden, and W. W. Gerberich, Phys. Rev. B: Condens. Matter 55, R16057 (1997).

    ADS  Google Scholar 

  52. J. K. Masson, A. C. Lund, and C. A. Schuh, Phys. Rev. B: Condens. Matter 73, 054102 (2006).

    Google Scholar 

  53. A. Barnoush and H. Vehoff, Scr. Mater. 55, 195 (2006).

    Article  Google Scholar 

  54. C. E. Packard and C. A. Schuh, Acta Mater. 55, 5348 (2007).

    Article  Google Scholar 

  55. Y. Estrin, H. S. Kim, and F. R. N. Nabarro, Acta Mater. 55, 6401 (2007).

    Article  Google Scholar 

  56. E. M. Morozov and M. V. Zernin, Contact Problems in Fracture Mechanics (Mashinostroenie, Moscow, 1999) [in Russian].

    Google Scholar 

  57. N. Gane and J. M. Cox, Philos. Mag. 22, 881 (1970).

    Article  ADS  Google Scholar 

  58. J. D. Kiely, R. Q Hwang, and J. E. Houston, Phys. Rev. Lett. 81, 4424 (1998).

    Article  ADS  Google Scholar 

  59. J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton, and S. M. Foiles, Phys. Rev. Lett. 87, 165507 (2001).

    Article  ADS  Google Scholar 

  60. Y. Shibutani and A. Koyama, J. Mater. Res. 19, 183 (2004).

    Article  ADS  Google Scholar 

  61. J.-Y. Kim, S.-K. Kang, J.-J. Lee, J. Jang, and Y.-H. Lee, Acta Mater. 55, 3555 (2007).

    Article  Google Scholar 

  62. Y. Shibutani, T. Tsuru, and A. Koyama, Acta Mater. 55, 1813 (2007).

    Article  Google Scholar 

  63. W. A. Soer, K. E. Aifantis, and J. Th. M. de Hosson, Acta Mater. 53, 4665 (2005).

    Article  Google Scholar 

  64. R. Iglesias and E. P. M. Leiva, Acta Mater. 54, 2655 (2006).

    Article  Google Scholar 

  65. W. D. Nix, J. R. Greer, G. Feng, and E. T. Lilleodden, Thin Solid Films 515, 3152 (2007).

    Article  ADS  Google Scholar 

  66. A. B. Mann and J. B. Pethica, Appl. Phys. Lett. 69, 907 (1996).

    Article  ADS  Google Scholar 

  67. B. S. Bokshteĭn, S. Z. Bokshteĭn, and A. A. Zhukhovitskiĭ, Thermodynamics and Kinetics of Diffusion in Solids (Metallurgiya, Moscow, 1974) [in Russian].

    Google Scholar 

  68. V. L. Indenbom, Pis’ma Zh. Éksp. Teor. Fiz. 12(11), 526 (1970) [JETP Lett. 12 (11), 369 (1970)].

    Google Scholar 

  69. V. N. Rozhznskii, M. P. Nazarova, I. Z. Svetlov, and L. K. Kalashnikova, Phys. Status Solidi 41, 579 (1970).

    Article  Google Scholar 

  70. Yu. I. Golovin and A. I. Tyurin, Pis’ma Zh. Éksp. Teor. Fiz. 60(10), 722 (1994) [JETP Lett. 60 (10), 742 (1994)].

    Google Scholar 

  71. Yu. I. Golovin and A. I. Tyurin, Kristallografiya 40(5), 884 (1995) [Crystallogr. Rep. 40 (5), 818 (1995)].

    Google Scholar 

  72. Yu. I. Golovin and A. I. Tyurin, Fiz. Tverd. Tela (St. Petersburg) 38(6), 1812 (1996) [Phys. Solid State 38 (6), 1000 (1996)].

    Google Scholar 

  73. Yu. I. Golovin, A. I. Tyurin, and B. Ya. Farber, Philos. Mag. A 82, 1857 (2002).

    ADS  Google Scholar 

  74. Yu. I. Golovin, A. I. Tyurin, and B. Ya. Farber, J. Mater. Sci. 37, 895 (2002).

    Article  Google Scholar 

  75. Yu. I. Golovin, V. I. Ivolgin, V. V. Korenkov, and A. I. Tyurin, Pis’ma Zh. Tekh. Fiz. 23(16), 15 (1997) [Tech. Phys. Lett. 23 (8), 621 (1997)].

    Google Scholar 

  76. Yu. I. Golovin, A. I. Tyurin, V. I. Ivolgin, and V. V. Korenkov, Tekh. Fiz. 70(5), 82 (2000) [Tech. Phys. 45 (5), 605 (2000)].

    Google Scholar 

  77. Z. K. Saralidze, M. V. Galustashvili, and D. G. Driaev, Fiz. Tverd. Tela (St. Petersburg) 48(7), 1229 (2006) [Phys. Solid State 48 (7), 1298 (2006)].

    Google Scholar 

  78. V. N. Rozhanskiĭ, N. L. Sizova, and A. A. Urusovskaya, Fiz. Tverd. Tela (Leningrad) 13(2), 411 (1971) [Sov. Phys. Solid State 13 (2), 335 (1971)].

    Google Scholar 

  79. O. R. Fuente, J. A. Zimmerman, M. A. Gonzalez, J. Figuera, J. C. Hamilton, W. W. Pai, and J. M. Rojo, Phys. Rev. Lett. 88, 036101-1 (2002).

    Google Scholar 

  80. M. A. Velednitskaya, V. N. Rozhanskii, L. F. Comolova, G. V. Saparin, J. Schreiber, and O. Brumer, Phys. Status Solidi A 32, 123 (1975).

    Article  ADS  Google Scholar 

  81. M. Sh. Akchurin, E. N. Vlasov, E. Yu. Mikhina, and V. R. Regel’, Fiz. Tverd. Tela (Leningrad) 30(3), 760 (1988) [Sov. Phys. Solid State 30 (3), 435 (1988)].

    Google Scholar 

  82. M. Sh. Akchurin, V. G. Galstyan, and V. R. Regel’, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 1556 (1991).

    Google Scholar 

  83. M. Sh. Akchurin and V. R. Regel, Chem. Rev. 23, 59 (1998).

    Google Scholar 

  84. B. Ya. Farber, V. I. Orlov, V. I. Nikitenko, and A. H. Heuer, Philos. Mag. A 78, 671 (1998).

    Article  ADS  Google Scholar 

  85. B. Ya. Farber, V. I. Orlov, and A. H. Heuer, Phys. Status Solidi A 166, 115 (1998).

    Article  ADS  Google Scholar 

  86. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B: Condens. Matter 58, 11085 (1998).

    ADS  Google Scholar 

  87. T. Zhu, J. Li, K. J. van Vliet, S. Ogata, S. Yip, and S. Suresh, J. Mech. Phys. Solids 52, 691 (2004).

    Article  MATH  ADS  Google Scholar 

  88. I. Szlufarska, Mater. Today 9, 42 (2006).

    Article  Google Scholar 

  89. C. Tromas, J. C. Girard, V. Audurier, and J. Woirgard, J. Mater. Sci. 34, 5337 (1999).

    Article  Google Scholar 

  90. C. Tromas, Y. Gaillard, and J. Woirgard, Philos. Mag. 86, 5595 (2006).

    Article  ADS  Google Scholar 

  91. P. Zhao and Y. Shimomura, Comput. Mater. Sci. 14, 84 (1999).

    Article  Google Scholar 

  92. M. Koyangi, Comput. Mater. Sci. 14, 103 (1999).

    Article  Google Scholar 

  93. J. R. Greer and W. D. Nix, Phys. Rev. B: Condens. Matter 73, 245410 (2006).

    ADS  Google Scholar 

  94. W. D. Nix, J. R. Greer, G. Feug, and E. T. Lilleoden, Thin Solid Films 515, 3152 (2007).

    Article  ADS  Google Scholar 

  95. B. A. Galanov, O. N. Grigor’ev, Yu. V. Mil’man, and I. P. Ragozin, Probl. Prochn., No. 11, 93 (1983).

  96. M. F. Doerner and W. D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  ADS  Google Scholar 

  97. ISO Group TC 164/SC 3/WG1 and ASTM E28.06.11. ISO/DIS 14577-1, 2, and 3.

  98. J. Thurn and R. Cook, J. Mater. Res. 17, 1143 (2002).

    Article  ADS  Google Scholar 

  99. N. V. Novikov, S. N. Dub, Yu. V. Mil’man, I. V. Gridneva, and S. I. Chugunova, Sverkhtverd. Mater., No. 3, 36 (1996).

  100. S. Dub, N. Novikov, and Y. Milman, Philos. Mag. 82, 2116 (2002).

    Google Scholar 

  101. J. M. Antunes, J. V. Fernandes, and L. F. Menezes, Acta Mater. 55, 69 (2007).

    Article  Google Scholar 

  102. D. Ma, C. W. Ong, S. F. Wong, and J. He, J. Mater. Res. 20, 1498 (2005).

    Article  ADS  Google Scholar 

  103. Y. P. Gao, M. Dao, and J. Li, J. Mater. Res. 22, 1255 (2007).

    Article  ADS  Google Scholar 

  104. M. Sakai, Acta Mater. 41, 1751 (1993).

    Article  Google Scholar 

  105. M. Sakai, J. Mater. Res. 18, 1631 (2003).

    Article  ADS  Google Scholar 

  106. M. Sakai, Scr. Mater. 51, 391 (2004).

    Article  Google Scholar 

  107. Yu. V. Milman, B. A. Galanov, and S. I. Chugunova, Acta Metall. Mater. 41, 2523 (1993).

    Article  Google Scholar 

  108. Yu. V. Milman and S. I. Chugunova, Int. J. Impact Eng. 23, 629 (1999).

    Article  Google Scholar 

  109. N. Chollacoop, M. Dao, and S. Suresh, Acta Mater. 51, 3713 (2003).

    Article  Google Scholar 

  110. L. Min, C. Wei-Min, L. Nai-Gang, and W. Ling-Dong, J. Mater. Res. 19, 73 (2004).

    ADS  Google Scholar 

  111. D. Ma, T. Zhang, and C. W. Ong, J. Mater. Res. 21, 225 (2006).

    Article  ADS  Google Scholar 

  112. L. Wang and S. I. Roklin, J. Mater. Res. 21, 995 (2006).

    Article  ADS  Google Scholar 

  113. S. Basu, M. W. Barsoum, A. Williams, and T. D. Moustakes, J. Appl. Phys. 101, 083522 (2007).

    Google Scholar 

  114. A. Sreeranganathan, A. Gokhale, and S. Tamirisakandala, Scr. Mater. 58, 114 (2008).

    Article  Google Scholar 

  115. B. A. Galanov, Yu. V. Mil’man, S. I. Chugunova, and I. V. Goncharova, Sverkhtverd. Mater., No. 3, 25 (1999).

  116. Microindentation Techniques in Materials Science and Engineering, Ed. by P. J. Blau and B. R. Lawn (The American Society of Testing Materials, Philadelphia, PA, United States, 1985).

    Google Scholar 

  117. Handbook of Measurement of Residual Stress, Ed. by J. Lu and M. R. James (Fairmount Press, Liburn, GA, United States, 1996).

    Google Scholar 

  118. T. Y. Tsui, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 752 (1996).

    Article  ADS  Google Scholar 

  119. S. Suresh and A. E. Giannakopoulos, Acta Mater. 46, 5755 (1998).

    Article  Google Scholar 

  120. J. G. Swadener, B. Taliat, and G. M. Pharr, J. Mater. Res. 16, 2091 (2001).

    Article  ADS  Google Scholar 

  121. Thin Films: Stresses and Mechanical Properties, Ed. by R. Vinci, O. Kraft, N. Moody, and E. Shaffer (Mater. Res. Soc. Symp. Proc. 594, 525 (2000)).

  122. L. Shaw, H. Luo, J. Villegas, and D. Miracle, Scr. Mater. 51, 449 (2004).

    Article  Google Scholar 

  123. Y.-H. Lee and D. Kwong, Acta Mater. 52, 1555 (2004).

    Article  Google Scholar 

  124. K. O. Kese, Z. C. Li, and B. Bergman, J. Mater. Res. 19, 3109 (2004).

    Article  ADS  Google Scholar 

  125. Y.-H. Lee, K. Takashima, and D. Kwong, Scr. Mater. 50, 1193 (2004).

    Article  Google Scholar 

  126. M. Zhao, X. Chen, J. Yan, and A. Karlsson, Acta Mater. 54, 2823 (2006).

    Article  Google Scholar 

  127. X. Chen, J. Yan, and A. M. Karlsson, Mater. Sci. Eng., A 416, 139 (2006).

    Article  Google Scholar 

  128. S. D. Mesarovic and N. A. Fleck, Proc. R. Soc. London, Ser. A 455, 2707 (1999).

    Article  MATH  ADS  Google Scholar 

  129. M. A. Lebedkin, Y. Brechet, Y. Estrin, and L. Kubin, Phys. Rev. Lett. 74, 4758 (1995).

    Article  ADS  Google Scholar 

  130. M. A. Lebedkin, Y. Brechet, Y. Estrin, and L. Kubin, Acta Mater. 44, 4531 (1996).

    Article  Google Scholar 

  131. M. A. Lebedkin and L. R. Dunin-Barkovskiĭ, Zh. Éksp. Teor. Fiz. 113(5), 1816 (1998) [JETP 86 (5), 993 (1998)].

    Google Scholar 

  132. M. A. Lebedkin, L. Dunin-Barkovskii, Y. Brechet, Y. Estrin, and L. Kubin, Acta Mater. 48, 2529 (2000).

    Article  Google Scholar 

  133. M. M. Krishtall, Fiz. Mezomekh. 7, 5 (2004).

    Google Scholar 

  134. G. Berches, N. Q. Chinh, A. Jahasz, and J. Lendvai, J. Mater. Res. 13, 1411 (1998).

    Article  ADS  Google Scholar 

  135. G. Berches, N. Q. Chinh, A. Jahasz, and J. Lendvai, Acta Mater. 46, 2029 (1998).

    Article  Google Scholar 

  136. Zs. Kovacs, D. Fatay, K. Nyilas, and J. Lendvai, J. Eng. Mater. Technol. 124, 1 (2002).

    Article  Google Scholar 

  137. N. Q. Chinh, G. Horvath, Zs. Kovacs, and J. Lendvai. Mater. Sci. Eng., A 324, 219 (2002).

    Article  Google Scholar 

  138. Yu. I. Golovin, V. I. Ivolgin, and M. A. Lebedkin, Fiz. Tverd. Tela (St. Petersburg) 44(7), 1254 (2002) [Phys. Solid State 44 (7), 1310 (2002)].

    Google Scholar 

  139. Yu. I. Golovin, V. I. Ivolgin, M. A. Lebedkin, and D. A. Sergunin, Fiz. Tverd. Tela (St. Petersburg) 46(9), 1618 (2004) [Phys. Solid State 46 (9), 1671 (2004)].

    Google Scholar 

  140. Yu. I. Golovin, V. I. Ivolgin, M. A. Lebedkin, and D. A. Sergunin, Fiz. Met. Metalloved. 97(2), 108 (2004) [Phys. Met. Metallogr. 97 (2), 220 (2004)].

    Google Scholar 

  141. Yu. I. Golovin, S. N. Dub, V. I. Ivolgin, V. V. Korenkov, and A. I. Tyurin, Izv. Akad. Nauk, Ser. Fiz. 68, 1428 (2004).

    Google Scholar 

  142. Yu. I. Golovin, V. I. Ivolgin, V. A. Khonik, K. Kitagawa, and A. I. Tyurin, Scr. Mater. 45, 947 (2001).

    Article  Google Scholar 

  143. Yu. I. Golovin, V. I. Ivolgin, A. I. Tyurin, and V. A. Khonik, Fiz. Tverd. Tela (St. Petersburg) 45(7), 1209 (2003) [Phys. Solid State 45 (7), 1267 (2003)].

    Google Scholar 

  144. Yu. I. Golovin, V. I. Ivolgin, A. I. Tyurin, S. V. Potapov, V. Z. Bengus, and E. D. Tabachnikova, Kristallografiya 50(2), 326 (2005) [Crystallogr. Rep. 50 (2), 291 (2005)].

    Google Scholar 

  145. Yu. Milman, D. V. Lotsko, S. N. Dub, A. I. Ustinov, S. C. Polischcuk, and S. V. Ulshin, Surf. Coat. Technol. 201, 5937 (2007).

    Article  Google Scholar 

  146. G. E. Lucas, J. Nucl. Mater. 117, 327 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  147. B. Storakes and P. L. Larason, J. Mech. Phys. Solids 42, 307 (1994).

    Article  ADS  Google Scholar 

  148. S. Srinivas, D. V. V. Sattyanarayana, and M. C. Pandey, Trans. Indian Inst. Met. 49, 625 (1996).

    Google Scholar 

  149. J. C. M. Li, Mater. Sci. Eng., A 322, 23 (2002).

    Article  Google Scholar 

  150. C. A. Schuh and T. G. Nieh, Acta Mater. 51, 87 (2003).

    Article  Google Scholar 

  151. G. P. Zhang, W. Wang, B. Zhang, J. Tan, and C. S. Liu, Scr. Mater. 52, 1147 (2005).

    Article  Google Scholar 

  152. R. Goodall and T. W. Clyne, Acta Mater. 54, 5489 (2006).

    Article  Google Scholar 

  153. H. Li and A. H. W. Ngan, Scr. Mater. 52, 827 (2005).

    Article  Google Scholar 

  154. V. Bhakhri and R. J. Klassen, Scr. Mater. 55, 395 (2006).

    Article  Google Scholar 

  155. C. A. Tweedie and K. J. van Vliet, J. Mater. Res. 21, 1576 (2006).

    Article  ADS  Google Scholar 

  156. M. Oyen, Acta Mater. 55, 3633 (2007).

    Article  Google Scholar 

  157. S. T. Choi, S. J. Jeong, and Y. Y. Earme, Scr. Mater. 58, 199 (2008).

    Article  Google Scholar 

  158. V. A. Likhachev and V. G. Malinin, The Structural-Analytical Theory of Strength (Nauka, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  159. M. J. Adams, D. M. Gorman, S. A. Jonson, and B. J. Briscoe, Philos. Mag. A 82, 2121 (2002).

    ADS  Google Scholar 

  160. C. A. Tweedie and K. J. van Vliet, J. Mater. Res. 21, 3029 (2006).

    Article  ADS  Google Scholar 

  161. M. L. Trunov, V. S. Bilanich, and S. N. Dub, Zh. Tekh. Fiz. 77(10), 50 (2007) [Tech. Phys. 52 (10), 1298 (2007)].

    Google Scholar 

  162. S. M. Goh and M. G. Scanlon, Acta Mater. 55, 3857 (2007).

    Article  Google Scholar 

  163. Yu. I. Golovin, V. I. Ivolgin, and R. I. Ryabko, Pis’ma Zh. Tekh. Fiz. 30(5), 64 (2004) [Tech. Phys. Lett. 30 (3), 202 (2004)].

    Google Scholar 

  164. Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Ed. by R. Waser (Wiley, Weinheim, 2003).

    Google Scholar 

  165. X. L. Fu, Y. Li, and C. A. Schuh, Acta Mater. 55, 3059 (2007).

    Article  Google Scholar 

  166. B. C. Wei, L. C. Zhang, T. H. Zhang, D. M. Xing, J. Das, and J. Eckert, J. Mater. Res. 22, 258 (2007).

    Article  ADS  Google Scholar 

  167. Yu. I. Golovin, Yu. L. Iunin, and A. I. Tyurin, Dokl. Akad. Nauk 392(1–3), 336 (2003) [Dokl. Phys. 48 (9), 505 (2003)].

    Google Scholar 

  168. Yu. I. Golovin, A. I. Tyurin, and V. V. Khlebnikov, Zh. Tekh. Fiz. 75(4), 91 (2005) [Tech. Phys. 50 (4), 479 (2005)].

    Google Scholar 

  169. D. S. Stone and K. B. Yoder, J. Mater. Res. 9, 2524 (1994).

    Article  ADS  Google Scholar 

  170. S. N. G. Chu and J. C. M. Li, J. Mater. Sci. 12, 2200 (1977).

    Article  ADS  Google Scholar 

  171. E. Takakura and S. Horibe, J. Mater. Sci. 22, 6151 (1992).

    Article  ADS  Google Scholar 

  172. A. Pajares, L. Wei, B. R. Lawn, and D. B. Marshall, J. Mater. Res. 11, 2613 (1996).

    Google Scholar 

  173. F. Guiberteau, N. P. Padture, H. Cai, and B. R. Lawn, Philos. Mag. A 5, 1003 (1993).

    Article  ADS  Google Scholar 

  174. F. Guiberteau, N. P. Padture, and B. R. Lawn, J. Am. Ceram. Soc. 7, 1825 (1994).

    Article  Google Scholar 

  175. Yu. I. Golovin, V. I. Ivolgin, V. V. Korenkov, and B. J. Farber, Fiz. Tverd. Tela (St. Petersburg) 43(10), 1839 (2001) [Phys. Solid State 43 (10), 1917 (2001)].

    Google Scholar 

  176. R. J. Anton and G. Subhash, Wear 239, 27 (2000).

    Article  Google Scholar 

  177. J. Laukford, W. W. Predebon, J. M. Staehler, S. Subhash, B. J. Pletka, and C. E. Anderson, Mech. Mater. 29, 205 (1998).

    Article  Google Scholar 

  178. G. Subhash and G. Ravichandrau, J. Mater. Sci. 33, 1933 (1998).

    Article  ADS  Google Scholar 

  179. V. Domnich and Y. Gogotsi, Rev. Adv. Mater. Sci. 3, 1 (2002).

    Article  Google Scholar 

  180. R. H. J. Hannik, P. M. Kelly, and B. C. Muddle, J. Am. Ceram. Soc. 83, 461 (2000).

    Article  Google Scholar 

  181. J.-J. Kim, Y. Cyoi, S. Suresh, and A. S. Argon, Science (Washington) 295, 654 (2002).

    ADS  Google Scholar 

  182. Y. G. Gogotsi, A. Kailer, and K. J. Nickel, Nature (London) 401, 666 (1999).

    Article  ADS  Google Scholar 

  183. R. O. Pilzt, J. R. Maclean, S. J. Clark, G. J. Ackland, P. D. Hatton, and J. Crain, Phys. Rev. B: Condens. Matter 52, 4072 (1995).

    ADS  Google Scholar 

  184. I. V. Gridneva, J. V. Milman, and V. I. Trefilov, Phys. Status Solidi A 14, 177 (1972).

    Article  ADS  Google Scholar 

  185. A. P. Gerk and D. Tabor, Nature (London) 271, 732 (1978).

    Article  ADS  Google Scholar 

  186. V. Domnich, Y. Gogotsi, and S. Dub, Appl. Phys. Lett. 76, 2214 (2000).

    Article  ADS  Google Scholar 

  187. Yu. Gogotsi, V. Domnich, S. N. Dub, A. Kailer, and K. G. Nicckel, J. Mater. Res. 15, 87 (2000).

    Google Scholar 

  188. C. Piconi and G. Maccauro, Biomaterials 20, 1 (1999).

    Article  Google Scholar 

  189. R. C. Garvie, R. H. J. Hannik, and R. T. Pascoe, Nature (London) 258, 703 (1975).

    Article  ADS  Google Scholar 

  190. Yu. I. Golovin, V. V. Korenkov, and B. Ya. Farber, Izv. Akad. Nauk, Ser. Fiz. 67, 840 (2003).

    Google Scholar 

  191. E. Williams, Ann. Sci. 13, 23 (1957).

    Article  Google Scholar 

  192. W. Weibull, Proc. R. Swedish Inst. Eng. Res. 153, 1 (1939).

    Google Scholar 

  193. Z. P. Bazant and J. Planas, Fracture and Size Effect in Concrete and Other Quasi-Brittle Materials (CRC Press, Boca Raton, FL, United States, 1998).

    Google Scholar 

  194. Z. P. Bazant, Arch. Appl. Mech. 69, 703 (1999).

    MATH  Google Scholar 

  195. I. Manika and J. Maniks, Acta Mater. 54, 2049 (2006).

    Article  Google Scholar 

  196. J. F. Nye, Acta Metall. 1, 153 (1953).

    Article  Google Scholar 

  197. N. A. Fleck and J. W. Hatchinson, J. Mech. Phys. Solids 41, 1825 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  198. M. A. Begley and J. W. Hatchinson, J. Mech. Phys. Solids 46, 2049 (1998).

    Article  MATH  ADS  Google Scholar 

  199. W. D. Nix and H. J. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  MATH  ADS  Google Scholar 

  200. B. R. Lawn, A. G. Evans, and D. B. Marshall, J. Am. Ceram. Soc. 63, 574 (1980).

    Article  Google Scholar 

  201. G. R. Anstis, P. Chanticul, B. R. Lawn, and D. B. Marshall. J. Am. Ceram. Soc. 64, 533 (1981).

    Article  Google Scholar 

  202. M. T. Laugier, J. Mater. Sci. Lett. 6, 897 (1987).

    Article  Google Scholar 

  203. R. Dukino and M. V. Swain, J. Am. Ceram. Soc. 75, 3299 (1992).

    Article  Google Scholar 

  204. Nanostructured Coatings, Ed. by A. Cavaleiro and J. T. M. de Hosson (Springer, New York, 2006).

    Google Scholar 

  205. G. V. Dedkov, Usp. Fiz. Nauk 170(6), 585 (2000) [Phys.-Usp. 43 (6), 541 (2000)].

    Article  Google Scholar 

  206. Fundamentals of Friction and Wear, Ed. by E. Gnecco and E. Meyer (Springer, Berlin, 2007).

    Google Scholar 

  207. A. K. Bhattacharya and W. Nix, Int. J. Solids Struct. 24, 1287 (1998).

    Article  Google Scholar 

  208. T. Y. Tsui and G. M. Pharr, J. Mater. Res. 14, 292 (1999).

    Article  ADS  Google Scholar 

  209. X. Chen and J. J. Vlassak, J. Mater. Res. 16, 2974 (2001).

    Article  ADS  Google Scholar 

  210. R. Saha and W. D. Nix, Acta Mater. 50, 23 (2002).

    Article  Google Scholar 

  211. G. Abadias, S. Dub, and R. Shmegera, Surf. Coat. Technol. 200, 6538 (2006).

    Article  Google Scholar 

  212. Y. T. Pei, G. M. Song, W. G. Sloof, and J. Th. M. de Hosson, Surf. Coat. Technol. 201, 6911 (2007).

    Article  Google Scholar 

  213. M. Sakai, J. Zhang, and A. Matsuda, J. Mater. Res. 20, 2173 (2005).

    Article  ADS  Google Scholar 

  214. Y. Xiang, X. Chen, T. Y. Tsui, J.-I. Jang, and J. J. Vlassak, J. Mater. Res. 21, 386 (2006).

    Article  ADS  Google Scholar 

  215. X. Li and B. Bhushan, Mater. Charact. 48, 11 (2002).

    Article  Google Scholar 

  216. A. A. Volinsky, N. R. Moody, and W. W. Gerberich, Acta Mater. 50, 441 (2002).

    Article  Google Scholar 

  217. D. B. Marshall and A. G. Evans, Appl. Phys. 56, 2632 (1984).

    Article  Google Scholar 

  218. L. G. Rosenfeld, J. E. Ritter, T. J. Lardner, and M. R. Lin, J. Appl. Phys. 67, 3291 (1990).

    Article  ADS  Google Scholar 

  219. W. W. Gerberich, D. E. Kramer, N. I. Tymiak, A. A. Volinsky, D. F. Bahr, and M. D. Kriese, Acta Mater. 47, 4115 (1999).

    Article  Google Scholar 

  220. M. J. Cordill, N. R. Moody, and D. F. Bahr, Acta Mater. 53, 2555 (2005).

    Article  Google Scholar 

  221. M. D. Kriese, W. W. Gerberich, and N. R. Moody, J. Mater. Res. 14 (Part I), 3007 (1999); J. Mater. Res. 14 (Part II), 3019 (1999).

    Article  ADS  Google Scholar 

  222. A. G. Evans, J. W. Hutchinson, and M. Y. He, Acta Mater. 47, 1513 (1999).

    Article  Google Scholar 

  223. F. Spaepen, Acta Mater. 48, 31 (2000).

    Article  Google Scholar 

  224. M. P. de Boer and W. W. Gerberich, Acta Mater. 44, 3169 (1996).

    Article  Google Scholar 

  225. M. P. de Boer and W. W. Gerberich, Acta Mater. 44, 3177 (1996).

    Article  Google Scholar 

  226. M. R. Begley, D. R. Mumm, A. G. Evans, and W. W. Hutchinson, Acta Mater. 48, 3211 (2000).

    Article  Google Scholar 

  227. A. Pandit and N. P. Padture, J. Mater. Sci. Lett. 22, 1261 (2003).

    Article  Google Scholar 

  228. M. R. Elizalde, J. M. Sanchez, J. M. Martinez-Esnaola, D. Pantuso, T. Scherban. B. Sun, and G. Xu, Acta Mater. 51, 4295 (2003).

    Article  Google Scholar 

  229. B. Rother and D. A. Dietrich, Thin Solid Films 250, 181 (1994).

    Article  ADS  Google Scholar 

  230. B. D. Beake, S. R. Goodes, and J. F. Smith, Surf. Eng. 17, 187 (2001).

    Article  Google Scholar 

  231. C. A. Cooper, S. R. Cohen, A. H. Barber, and D. H. Wagner, Appl. Phys. Lett. 81, 3873 (2002).

    Article  ADS  Google Scholar 

  232. T. Y. Tsui and A. J. McKerrow, J. Mater. Res. 20, 2266 (2005).

    Article  ADS  Google Scholar 

  233. J. J. Vlassak, Int. J. Fracture 119, 299 (2003).

    Article  Google Scholar 

  234. P. Burnett and D. Rickersby, Thin Solid Films 154, 403 (1987).

    Article  ADS  Google Scholar 

  235. V. Tvergaard and J. W. Hutchinson, J. Mech. Phys. Solids 44, 789 (1996).

    Article  ADS  Google Scholar 

  236. M. P. de Boer, J. C. Nelson, and W. W. Gerberich, J. Mater. Res. 12, 2673 (1997).

    Article  ADS  Google Scholar 

  237. M. P. de Boer, J. C. Nelson, and W. W. Gerberich, J. Mater. Res. 13, 1002 (1998).

    Article  ADS  Google Scholar 

  238. A. Bagchi, G. Lukas, Z. Suo, and A. Evans, J. Mater. Res. 11, 4051 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Additional information

Original Russian Text © Yu.I. Golovin, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 12, pp. 2113–2142.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovin, Y.I. Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A Review. Phys. Solid State 50, 2205–2236 (2008). https://doi.org/10.1134/S1063783408120019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408120019

PACS numbers

Navigation