Skip to main content
Log in

An electromechanical nanothermometer based on thermal vibrations of carbon nanotube walls

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A new concept is proposed for an electromechanical nanothermometer. The temperature measurements are performed by measuring the conductivity of the nanosystem, which depends substantially on the temperature due to the relative thermal vibrations of nanoobjects forming the nanosystem. The possibility of implementing the proposed concept is demonstrated using double-walled carbon nanotubes as an example. The dependence of the interwall interaction energy on the relative displacement of the nanotube walls is calculated within the density-functional theory. The conductivity of the nanotubes is calculated in the frame-work of the two-band Hubbard model. The calculations of the wall interaction energy and the conductivity are used to estimate the sizes of the nanothermometers based on different double-walled carbon nanotubes. It is shown that the nanothermometer under consideration can be used for measuring the temperature in localized regions with sizes of the order of several hundred nanometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Aliviscatos, and P. L. McEuen, Nature (London) 404, 57 (2000).

    ADS  Google Scholar 

  2. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).

    Article  ADS  Google Scholar 

  3. J. Cumings and A. Zettl, Science (Washington) 289, 602 (2000).

    Article  ADS  Google Scholar 

  4. A. Kis, K. Jensen, S. Aloni, W. Mickelson, and A. Zettl, Phys. Rev. Lett. 97, 025501 (2006).

    Google Scholar 

  5. Yu. E. Lozovik, A. V. Minogin, and A. M. Popov, Phys. Lett. A 313, 112 (2003).

    Article  ADS  Google Scholar 

  6. Yu. E. Lozovik, A. V. Minogin, and A. M. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 77(11), 759 (2003) [JETP Lett. 77 (11), 631 (2003)].

    Google Scholar 

  7. E. Bichoutskaia, M. I. Heggie, Yu. E. Lozovik, and A. M. Popov, Fullerenes, Nanotubes Carbon Nanostruct. 14, 131 (2000).

    Article  Google Scholar 

  8. L. Maslov, Nanotechnology 17, 2475 (2006).

    Article  ADS  Google Scholar 

  9. A. M. Popov, E. Bichoutskaia, Yu. E. Lozovik, and A. S. Kulish, Phys. Status Solidi A 204, 1911 (2007).

    Article  Google Scholar 

  10. A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, Nature (London) 424, 408 (2003).

    Article  ADS  Google Scholar 

  11. B. Bourlon, D. C. Glatti, L. Forro, and A. Bachtold, Nano Lett. 4, 709 (2004).

    Article  ADS  Google Scholar 

  12. I. M. Grace, S. W. Bailey, and C. J. Lambert, Phys. Rev. B: Condens. Matter 70, 153405 (2004).

    Google Scholar 

  13. M. A. Tunney and N. R. Cooper, Phys. Rev. B: Condens. Matter 74, 075406 (2006).

    Google Scholar 

  14. B. Gao, Y. F. Chen, M. S. Fuhrer, D. C. Glattli, and A. Bachtold, Phys. Rev. Lett. 95, 196802 (2005).

    Google Scholar 

  15. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Ed. by M. S. Dresselhaus, G. Dresselhaus, and P. Avouris (Springer, Berlin, 2001).

    Google Scholar 

  16. M. Damnjanović, I. Milošević, T. Vuković, and R. Sredanović, Phys. Rev. B: Condens. Matter 60, 2728 (1999).

    ADS  Google Scholar 

  17. T. Vuković, M. Damnjavonić, and I. Milošević, Physica E (Amsterdam) 16, 259 (2003).

    Google Scholar 

  18. M. Damnjanović, T. Vuković, and I. Milošević, Eur. Phys. J. B 25, 131 (2002).

    Article  ADS  Google Scholar 

  19. A. V. Balikov, Yu. E. Lozovik, A. G. Nikolaev, and A. M. Popov, Chem. Phys. Lett. 385, 72 (2004).

    Article  ADS  Google Scholar 

  20. E. Bichoutskaia, A. M. Popov, A. El-Barbary, M. I. Heggie, and Yu. E. Lozovik, Phys. Rev. B: Condens. Matter 71, 113403 (2005).

    Google Scholar 

  21. Yu. E. Lozovik and A. M. Popov, Usp. Fiz. Nauk 177(7), 786 (2007) [Phys.—Usp. 50, (7), 749 (2007)].

    Article  Google Scholar 

  22. M. Damnjanović, E. Dobardzić, I. Milošević, T. Vuković, and B. Nikolić, New J. Phys. 5, 148.1 (2003).

    Google Scholar 

  23. P. R. Briddon and R. Jones, Phys. Status Solidi B 217, 131 (2000).

    Article  Google Scholar 

  24. G. B. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B: Condens. Matter 26, 4199 (1982).

    ADS  Google Scholar 

  25. J. P. Perdew and Y. Wang, Phys. Rev. B: Condens. Matter 45, 13244 (1992).

    ADS  Google Scholar 

  26. R. H. Telling and M. I. Heggie, Philos. Mag. Lett. 83, 411 (2003).

    Article  ADS  Google Scholar 

  27. L. X. Benedict, N. G. Chopra, M. L. Cohen, A. Zettl, S. G. Lonie, and V. H. Crespi, Chem. Phys. Lett. 286, 490 (1998).

    Article  ADS  Google Scholar 

  28. C. S. G. Cousins and M. I. Heggie, Phys. Rev. B: Condens. Matter 67, 024109 (2003).

    Google Scholar 

  29. Yu. A. Izyumov, M. I. Katsnel’son, and Yu. N. Skryabin, Itinerant Electron Magnetism (Fizmatlit, Moscow, 1994) [in Russian].

    Google Scholar 

  30. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Nauka, Moscow, 1975; Plenum, New York, 1967).

    Google Scholar 

  31. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975; Dobrosvet, Moscow, 1998).

    Google Scholar 

  32. G. S. Ivanchenko and N. G. Lebedev, Fiz. Tverd. Tela (St. Petersburg) 49(1), 183 (2007) [Phys. Solid State 49 (1), 189 (2007)].

    Google Scholar 

  33. E. Bichoutskaia, A. M. Popov, M. I. Heggie, and Yu. E. Lozovik, Phys. Rev. B: Condens. Matter 73, 045435 (2006).

    Google Scholar 

  34. Y. Gao and Y. Bando, Nature (London) 415, 599 (2002).

    Article  Google Scholar 

  35. Y. Gao, Y. Bando, Z. Liu, D. Golberg, and H. Nakanishi, Appl. Phys. Lett. 83, 2913 (2003).

    Article  ADS  Google Scholar 

  36. D. R. Schnidt, C. R. Yung, and A. N. Cleland, Appl. Phys. Lett. 83, 1002 (2003).

    Article  ADS  Google Scholar 

  37. A. M. Popov, Yu. E. Lozovik, S. Fiorito, and L’Hocine Yahia, Int. J. Nanomed. 2, 361 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Popov.

Additional information

Original Russian Text © A.M. Popov, Yu.E. Lozovik, E. Bichoutskaia, G.S. Ivanchenko, N.G. Lebedev, E.K. Krivorotov, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 6, pp. 1230–1237.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, A.M., Lozovik, Y.E., Bichoutskaia, E. et al. An electromechanical nanothermometer based on thermal vibrations of carbon nanotube walls. Phys. Solid State 51, 1306–1314 (2009). https://doi.org/10.1134/S1063783409060353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409060353

PACS numbers

Navigation