Skip to main content
Log in

Plastic flow and fracture of amorphous intercrystalline layers in ceramic nanocomposites

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theoretical model has been proposed for describing the plastic flow and fracture of amorphous intercrystalline layers in ceramic nanocomposites. The mechanism of plastic deformation has been considered as homogeneous nucleation and growth of liquidlike phase inclusions subjected to plastic shear. It has been demonstrated using a nanoceramic material consisting of TiN nanocrystallites and Si3N4 amorphous layers as an example that, when the length of the amorphous layer is reached and a considerable dislocation charge is accumulated, these inclusions induce the formation and growth of Mode I–II cracks in neighboring amorphous layers. In this case, the possibility of opening and growing the crack depends very strongly on the test temperature, the layer orientation, and the size of nanoceramic grains. An increase in the temperature and the angle of orientation and a decrease in the size of nanoceramic grains favor an increase in the crack resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Veprek and A. S. Argon, J. Vac. Sci. Technol. 20, 650 (2002).

    Article  Google Scholar 

  2. G.-D. Zhan, J. D. Kuntz, J. Wan, and A. K. Mukherjee, Nat. Mater. 2, 38 (2003).

    Article  ADS  Google Scholar 

  3. G.-D. Zhan, J. D. Kuntz, and A. K. Mukherjee, MRS Bull. 29, 22 (2004).

    Google Scholar 

  4. Y. T. Pei, D. Galvan, and J. T. M. De Hosson, Acta Mater. 53, 4505 (2005).

    Article  Google Scholar 

  5. C. S. Lu, Y.-W. Mai, and Y.-G. Shen, J. Mater. Sci. 41, 937 (2006).

    Article  ADS  Google Scholar 

  6. V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal, Mater. Sci. Eng., R 54, 121 (2006).

    Article  Google Scholar 

  7. X. Xu, T. Nishimura, N. Hirosaki, R.-J. Xie, Y. Yamamoto, and H. Tanaka, Acta Mater. 54, 255 (2006).

    Article  Google Scholar 

  8. D. M. Hulbert, D. Jiang, J. D. Kuntz, Y. Kodera, and A. K. Mukherjee, Scr. Mater. 56, 1103 (2007).

    Article  Google Scholar 

  9. C. C. Koch, I. A. Ovid’ko, S. Seal, and S. Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications (Cambridge University Press, Cambridge, 2007).

    Book  Google Scholar 

  10. A. Mukhopadhyay and B. Basu, Int. Mater. Rev. 52, 257 (2007).

    Article  Google Scholar 

  11. A. Swiderska-Sroda, G. Kalisz, B. Palosz, and N. Herlin-Boime, Rev. Adv. Mater. Sci. 18, 422 (2008).

    Google Scholar 

  12. R. A. Andrievski and A. M. Glezer, Usp. Fiz. Nauk 179(4), 337 (2009) [Phys.-Usp. 52 (4), 315 (2009)].

    Article  Google Scholar 

  13. I. Szlufarska, A. Nakano, and P. Vashishta, Science (Washington) 309, 911 (2005).

    Article  ADS  Google Scholar 

  14. Y. Mo and I. Szlufarska, Appl. Phys. Lett. 90, 181926 (2007).

    Article  ADS  Google Scholar 

  15. M. Yu. Gutkin and I. A. Ovid’ko, Physical Mechanics of Deformed Nanostructures, Vol. 1: Nanocrystalline Materials (Yanus, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  16. V. A. Pozdnyakov and A. M. Glezer, Pis’ma Zh. Tekh. Fiz. 21(1), 31 (1995) [Tech. Phys. Lett. 21 (1), 13 (1995)].

    Google Scholar 

  17. A. Glezer and V. Pozdnyakov, Nanostruct. Mater. 6, 767 (1995).

    Article  Google Scholar 

  18. V. A. Pozdnyakov and A. M. Grezer, Fiz. Tverd. Tela (St. Petersburg) 44(4), 705 (2002) [Phys. Solid State 44 (4), 732 (2002)].

    Google Scholar 

  19. V. A. Pozdnyakov and A. M. Glezer, Fiz. Tverd. Tela (St. Petersburg) 47(5), 793 (2005) [Phys. Solid State 47 (5), 817 (2005)].

    Google Scholar 

  20. M. J. Demkowicz and A. S. Argon, Phys. Rev. Lett. 93, 025505 (2004).

    Article  ADS  Google Scholar 

  21. M. J. Demkowicz and A. S. Argon, Phys. Rev. B: Condens. Matter 72, 245205 (2005).

    ADS  Google Scholar 

  22. M. J. Demkowicz and A. S. Argon, Phys. Rev. B: Condens. Matter 72, 245206 (2005).

    ADS  Google Scholar 

  23. M. J. Demkowicz, A. S. Argon, D. Farkas, and M. Frary, Philos. Mag. 87, 4253 (2007).

    Article  ADS  Google Scholar 

  24. S. V. Bobylev and I. A. Ovid’ko, Fiz. Tverd. Tela (St. Petersburg) 50(4), 617 (2008) [Phys. Solid State 50 (4), 642 (2008)].

    Google Scholar 

  25. I. A. Ovid’ko, N. V. Skiba, and A. G. Sheĭnerman, Fiz. Tverd. Tela (St. Petersburg) 50(7), 1211 (2008) [Phys. Solid State 50 (7), 1261 (2008)].

    Google Scholar 

  26. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, Fiz. Tverd. Tela (St. Petersburg) 50(11), 1813 (2008) [Phys. Solid State 50 (11), 1888 (2008)].

    Google Scholar 

  27. M. Yu. Gutkin and I. A. Ovid’ko, Fiz. Tverd. Tela (St. Petersburg) 52(1), 56 (2010) [Phys. Solid State 52 (1), 58 (2010)].

    Google Scholar 

  28. M. Yu. Gutkin, I. A. Ovid’ko, and Yu. I. Meshcheryakov, J. Phys. III 3, 1563 (1993).

    Article  Google Scholar 

  29. A. Khan, J. Philip, and P. Hess, J. Appl. Phys. 95, 1667 (2004).

    Article  ADS  Google Scholar 

  30. R. F. Zhang and S. Veprek, Phys. Rev. B: Condens. Matter 76, 174105 (2007).

    ADS  Google Scholar 

  31. T. Aiyama, T. Fukunaga, K. Niihara, T. Hirai, and K. Suzuki, J. Non-Cryst. Solids 33, 131 (1979).

    Article  ADS  Google Scholar 

  32. M. Misawa, T. Fukunaga, K. Niihara, T. Hirai, and K. Suzuki, J. Non-Cryst. Solids 34, 313 (1979).

    Article  ADS  Google Scholar 

  33. T. Fukunaga, T. Goto, M. Misawa, T. Hirai, and K. Suzuki, J. Non-Cryst. Solids 95–96, 1119 (1987).

    Article  Google Scholar 

  34. P. Ordejón and F. Ynduráin, J. Non-Cryst. Solids 137–138, 891 (1991).

    Article  Google Scholar 

  35. V. L. Indenbom, Fiz. Tverd. Tela (Leningrad) 3, 2071 (1961) [Sov. Phys. Solid State 3, 1506 (1961)].

    Google Scholar 

  36. I. A. Ovid’ko and A. G. Sheinerman, Acta Mater. 52, 1201 (2004).

    Article  Google Scholar 

  37. A. A. Griffith, Philos. Trans. R. Soc. London, Ser. A 221, 163 (1921).

    Article  ADS  Google Scholar 

  38. R. G. Veprek, D. M. Parks, A. S. Argon, and S. Veprek, Mater. Sci. Eng., A 422, 205 (2006).

    Article  Google Scholar 

  39. J. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967; Atomizdat, Moscow, 1972).

    Google Scholar 

  40. K. Tsurula, A. Nakano, R. K. Kalia, and P. Vashishta, J. Am. Ceram. Soc. 81, 433 (1998).

    Google Scholar 

  41. R. W. Trice and J. W. Halloran, J. Am. Ceram. Soc. 82, 2633 (1999).

    Article  Google Scholar 

  42. Y. P. Zeng, J. F. Yang, N. Kondo, T. Ohji, H. Kita, and S. Kanzaki, J. Am. Ceram. Soc. 88, 1622 (2005).

    Article  Google Scholar 

  43. X. Zhu and Y. Sakka, Sci. Technol. Adv. Mater. 9, 033001 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Gutkin.

Additional information

Original Russian Text © M.Yu. Gutkin, I.A. Ovid’ko, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 4, pp. 668–677.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutkin, M.Y., Ovid’ko, I.A. Plastic flow and fracture of amorphous intercrystalline layers in ceramic nanocomposites. Phys. Solid State 52, 718–727 (2010). https://doi.org/10.1134/S1063783410040086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410040086

Keywords

Navigation