Skip to main content
Log in

Structural transformations in the Al85Ni6.1Co2Gd6Si0.9 amorphous alloy during multiple rolling

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of multiple rolling at room temperature on the structure and crystallization of the Al85Ni6.1Co2Gd6Si0.9 amorphous alloy has been studied using transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction. The total plastic strain is 33%. It has been shown that the deformation results in the formation of aluminum nanocrystals with the average size that does not exceed 10–15 nm. The nanocrystals are formed in regions of localization of plastic deformation. The deformation decreases the thermal effect of nanocrystallization (∼15%) as compared to the heat release at the first stage of crystallization of the unstrained sample. The morphology, structure, and distribution of precipitates have been investigated. Possible mechanisms of the formation of nanocrystals during the deformation have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. He, J. F. Poon, and G. Y. Shiflet, Science (Washington) 241, 1640 (1988).

    Article  ADS  Google Scholar 

  2. A. Inoue, T. Ochiai, Y. Horio, and T. Masumoto, Mater. Sci. Eng., A 179/180, 649 (1994).

    Article  Google Scholar 

  3. Y. H. Kim, A. Inoue, and T. Masumoto, Mater. Trans., JIM 32, 331 (1991).

    Google Scholar 

  4. D. V. Louzguine and A. Inoue, J. Non-Cryst. Solids 311, 281 (2002).

    Article  ADS  Google Scholar 

  5. A. S. Aronin, G. E. Abrosimova, and Yu. V. Kir’yanov, Fiz. Tverd. Tela (St. Petersburg) 43(11), 1925 (2001) [Phys. Solid State 43 (11), 2003 (2001)].

    Google Scholar 

  6. G. E. Abrosimova and A. S. Aronin, Fiz. Tverd. Tela (St. Petersburg) 51(9), 1665 (2009) [Phys. Solid State 51 (9), 1765 (2009)].

    Google Scholar 

  7. W. H. Jiang and M. Atzmon, Acta Mater. 51, 4095 (2003).

    Article  Google Scholar 

  8. W. H. Jiang and M. Atzmon, Scr. Mater. 54, 333 (2006).

    Article  Google Scholar 

  9. J. Xu and M. Atzmon, Appl. Phys. Lett. 73, 1805 (1998).

    Article  ADS  Google Scholar 

  10. W. H. Jiang, F. E. Pinkerton, and M. Atzmon, J. Appl. Phys. 93, 9287 (2003).

    Article  ADS  Google Scholar 

  11. R. J. Hebert and J. H. Perepezko, Mater. Sci. Eng., A 375–377, 728 (2004).

    Google Scholar 

  12. R. J. Hebert, J. H. Perepezko, H. Rosner, and G. Wilde, Scr. Mater. 54, 25 (2006).

    Article  Google Scholar 

  13. R. J. Hebert, N. Boucharat, J. H. Perepezko, H. Rösner, and G. Wilde, J. Alloys Compd. 434–435, 18 (2007).

    Article  Google Scholar 

  14. W. H. Jiang and M. Atzmon, Appl. Phys. Lett. 86, 151916 (2005).

    Article  ADS  Google Scholar 

  15. D. V. Gunderov, A. G. Popov, N. N. Scheglova, V. V. Stolyarov, and A. R. Yavary, in Nanomaterials by Severe Plastic Deformation, Ed. by M. J. Zehetbauer and R. Z. Valiev (Wiley, Weinheim, Germany, 2004), p. 165.

    Google Scholar 

  16. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  17. N. Boucharat, R. Hebert, H. Rösner, R. Valiev, and G. Wilde, Scr. Mater. 53, 823 (2005).

    Article  Google Scholar 

  18. Zs. Kovacs, P. Henits, A. P. Zhilyaev, and A. Revesz, Scr. Mater. 54, 1733 (2006).

    Article  Google Scholar 

  19. G. E. Abrosimova, A. S. Aronin, S. V. Dobatkin, I. I. Zver’kova, D. V. Matveev, O. G. Rybchenko, and E. V. Tat’yanin, Fiz. Tverd. Tela (St. Petersburg) 49 (6), 983 (2007) [Phys. Solid State 49 (6), 1034 (2007)].

    Google Scholar 

  20. G. Mazzone, A. Montone, and M. V. Antisari, Phys. Rev. Lett. 65, 2019 (1990).

    Article  ADS  Google Scholar 

  21. Diffusion in Solid Metals and Alloys: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. Subseries: Condense Matter, Ed. by H. Bakker, H. P. Bonzel, C. M. Bruff, M. A. Dayananda, W. Gust, J. Horvath, I. Kaur, G. V. Kidson, A. D. LeClaire, H. Mehrer, G. E. Murch, G. Neumann, N. Stolica, N. A. Stolwijk, and H. Mehrer (Springer, Berlin, Germany, 1990), Vol. 26.

    Google Scholar 

  22. B. S. Bokshtein, Diffusion in Metals (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Abrosimova.

Additional information

Original Russian Text © G. Abrosimova, A. Aronin, O. Barkalov, D. Matveev, O. Rybchenko, V. Maslov, V. Tkach, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 2, pp. 215–219.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrosimova, G., Aronin, A., Barkalov, O. et al. Structural transformations in the Al85Ni6.1Co2Gd6Si0.9 amorphous alloy during multiple rolling. Phys. Solid State 53, 229–233 (2011). https://doi.org/10.1134/S1063783411020028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411020028

Keywords

Navigation