Skip to main content
Log in

Concentration and temperature dependences of the oxygen migration energy in yttrium-stabilized zirconia

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The ionic conductivity of zirconia with different contents of the yttrium stabilizing impurity has been studied using impedance spectroscopy in the temperature range 300–910°C. A deviation of the temperature dependence of the conductivity in the crystallite bulk from the Arrhenius equation has been revealed. A quantum-mechanics estimation of the influence of the yttrium content on the oxygen-vacancy migration barrier as a function of its distance to the yttrium atom has been carried out. A two-barrier mechanism of the dependence of the oxygen migration energy on the yttrium content in zirconia due to anion vacancy trapping by yttrium has been proposed. Analytical dependences of the concentration of free (active) anion vacancies and the activation energy of ionic conductivity on the temperature and stabilizing impurity content have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Aleksandrov, G. E. Val’yano, and B. V. Lukin, Izv. Akad. Nauk SSSR, Neorg. Mater. 12, 273 (1967).

    Google Scholar 

  2. P. Aberland and J. F. Baumard, Phys. Rev. B: Condens. Matter 26, 1005 (1982).

    Article  ADS  Google Scholar 

  3. J. E. Bauerle and J. J. Hrizo, Phys. Chem. Solids 30, 565 (1969).

    Article  ADS  Google Scholar 

  4. J. D. Solier, I. Cachadina, and A. Dominques-Rodriques, Phys. Rev. B: Condens. Matter 48, 3704 (1993).

    Article  ADS  Google Scholar 

  5. I. Cachadina, J. D. Solier, and A. Dominques-Rodriques, Phys. Rev. B: Condens. Matter 52, 10872 (1995).

    Article  ADS  Google Scholar 

  6. Y. Oishi and K. Ando, NATO ASI Ser., Ser. B 129, 189 (1985).

    Article  Google Scholar 

  7. X. Li and B. Hafskjold, J. Phys.: Condens. Matter 7, 1255 (1995).

    Article  ADS  Google Scholar 

  8. M. Kilo, R. A. Jackson, and G. Borchardt, Philos. Mag. 11, 3309 (2003).

    Article  ADS  Google Scholar 

  9. V. G. Zavodinsky, Phys. Solid State 46(3), 453 (2004).

    Article  ADS  Google Scholar 

  10. J. Cizek, O. Melikhova, I. Prochazka, J. Kuriplach, R. Kuzel, G. Brauer, W. Anwand, T. Konstantinova, and I. Danilenko, Phys. Rev. B: Condens. Matter 81, 024116 (2010).

    Article  ADS  Google Scholar 

  11. Yu. Z. Agamalov, D. F. Bobylev, and V. Yu. Kneller, Datchiki Sist., No. 5, 14 (2004).

  12. R. E. W. Casselton, Phys. Status Solidi A 2, 571 (1970).

    Article  ADS  Google Scholar 

  13. J. Luo, D. P. Almond, and R. Stevens, J. Am. Ceram. Soc. 83, 1703 (2000).

    Article  Google Scholar 

  14. V. Tokiy, T. Konstantinova, D. Savina, and N. Tokiy, in Computational Modelling and Simulation of Materials II, Ed. by P. Vincenzini and A Lami (Techna, Faenza, Italy, 2003), p. 121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Tokiy.

Additional information

Original Russian Text © N.V. Tokiy, B.I. Perekrestov, D.L. Savina, I.A. Danilenko, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 9, pp. 1732–1736.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokiy, N.V., Perekrestov, B.I., Savina, D.L. et al. Concentration and temperature dependences of the oxygen migration energy in yttrium-stabilized zirconia. Phys. Solid State 53, 1827–1831 (2011). https://doi.org/10.1134/S1063783411090290

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411090290

Keywords

Navigation