Skip to main content
Log in

Quantum metal film in the dielectric environment

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A method has been proposed for self-consistent calculations of characteristics of a metal film in dielectrics. The most interesting (asymmetric) case of metal-dielectric sandwiches, where the dielectrics are different on both sides of the film, has been considered in terms of the modified Kohn-Sham method and the stabilized jellium model. The spectrum, electron work function, and surface energy of polycrystalline films placed in passive insulators have been calculated for the first time using Al and Na as an example. It has been found that the dielectric environment generally leads to a negative change in both the electron work function and the surface energy. In addition to the size changes, the shift of the work function is determined by the arithmetic mean of the dielectric constants of the surrounding media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Otero, A. L. Vazquez de Parga, and R. Miranda, Phys. Rev. B: Condens. Matter 66, 115401 (2002).

    Article  ADS  Google Scholar 

  2. J. J. Paggel, C. M. Wei, M. Y. Chou, D.-A. Luh, T. Miller, and T.-C. Chiang, Phys. Rev. B: Condens. Matter 66, 233403 (2002).

    Article  ADS  Google Scholar 

  3. D. V. Buturovich, M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Phys. Solid State 48(11), 2205 (2006); M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Phys. Solid State 50 (2), 369 (2008).

    Article  ADS  Google Scholar 

  4. Y. Liu, J. J. Paggel, M. H. Upton, T. Miller, and T.-C. Chiang, Phys. Rev. B: Condens. Matter 78, 235437 (2008).

    Article  ADS  Google Scholar 

  5. T.-C. Chiang, Assoc. Asia Pac. Phys. Soc. Bull. 18, 2 (2008).

    Google Scholar 

  6. A. L. Vazquez de Parga, J. J. Hinarejos, F. Calleja, J. Camarero, R. Otero, and R. Miranda, Surf. Sci. 603, 1389 (2009).

    Article  ADS  Google Scholar 

  7. N. A. Vinogradov, D. E. Marchenko, A. M. Shikin, V. K. Adamchuk, and O. Rader, Phys. Solid State 51(1), 179 (2009).

    Article  ADS  Google Scholar 

  8. P.-W. Chen, Y.-H. Lu, T.-R. Chang, C.-B. Wang, L.-Y. Liang, C.-H. Lin, C.-M. Cheng, K.-D. Tsuei, H.-T. Jeng, and S.-J. Tang, Phys. Rev. B: Condens. Matter 84, 205401 (2011).

    Article  ADS  Google Scholar 

  9. J. P. Rogers III, P. H. Cutler, T. E. Feuchtwang, and A. A. Lucas, Surf. Sci. 181, 436 (1987).

    Article  ADS  Google Scholar 

  10. M. V. Moskalets, JETP Lett. 62(9), 719 (1995).

    ADS  Google Scholar 

  11. V. V. Pogosov, V. P. Kurbatsky, and E. V. Vasyutin, Phys. Rev. B: Condens. Matter 71, 195410 (2005).

    Article  ADS  Google Scholar 

  12. Y. Han and D.-J. Liu, Phys. Rev. B: Condens. Matter 80, 155404 (2009).

    Article  ADS  Google Scholar 

  13. V. P. Kurbatsky and V. V. Pogosov, Phys. Rev. B: Condens. Matter 81, 155404 (2010).

    Article  ADS  Google Scholar 

  14. V. D. Dymnikov, Phys. Solid State 53(5), 901 (2011).

    Article  ADS  Google Scholar 

  15. F. K. Schulte, Surf. Sci. 55, 427 (1976).

    Article  ADS  Google Scholar 

  16. N. Zabala, M. J. Puska, and R. M. Nieminen, Phys. Rev. B: Condens. Matter 59, 12652 (1999).

    Article  ADS  Google Scholar 

  17. I. Sarria, C. Henriques, C. Fiolhais, and J. M. Pitarke, Phys. Rev. B: Condens. Matter 62, 1699 (2000).

    Article  ADS  Google Scholar 

  18. A. N. Smogunov, L. I. Kurkina, and O. V. Farberovich, Phys. Solid State 42 (10), 1898 (2000).

    Google Scholar 

  19. C. M. Horowitz, L. A. Constantin, C. R. Proetto, and J. M. Pitarke, Phys. Rev. B: Condens. Matter 80, 235101 (2009).

    Article  ADS  Google Scholar 

  20. P. J. Feibelman and D. R. Hamann, Phys. Rev. B: Condens. Matter 29, 6463 (1984).

    Article  ADS  Google Scholar 

  21. J. C. Boettger, Phys. Rev. B: Condens. Matter 53, 13133 (1996).

    Article  ADS  Google Scholar 

  22. Z. Zhang, Q. Niu, and C.-K. Shih, Phys. Rev. Lett. 80, 5381 (1998).

    Article  ADS  Google Scholar 

  23. A. Kiejna, J. Peisert, and P. Scharoch, Surf. Sci. 432, 54 (1999).

    Article  ADS  Google Scholar 

  24. V. V. Pogosov, Solid State Commun. 75, 469 (1990).

    Article  ADS  Google Scholar 

  25. J. P. Perdew, H. Q. Tran, and E. D. Smith, Phys. Rev. B: Condens. Matter 42, 11627 (1990).

    Article  ADS  Google Scholar 

  26. J. P. Perdew and A. Zunger, Phys. Rev. B: Condens. Matter 23, 5048 (1981).

    Article  ADS  Google Scholar 

  27. A. V. Babich and V. V. Pogosov, Surf. Sci. 603, 2393 (2009).

    Article  ADS  Google Scholar 

  28. N. D. Lang and W. Kohn, Phys. Rev. B: Solid State 3, 6010 (1973).

    Article  ADS  Google Scholar 

  29. V. V. Pogosov, Introduction to the Physics of Charge and Size Effects: Surface, Clusters, and Low-Dimensional Systems (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  30. J. Arponen, P. Hautojärvi, R. Nieminen, and E. Pajanne, J. Phys. F: Met. Phys. 3, 2092 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pogosov.

Additional information

Original Russian Text © A.V. Babich, V.V. Pogosov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 1, pp. 177–185.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babich, A.V., Pogosov, V.V. Quantum metal film in the dielectric environment. Phys. Solid State 55, 196–204 (2013). https://doi.org/10.1134/S1063783413010071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413010071

Keywords

Navigation