Skip to main content
Log in

Structural and some electrophysical properties of the solid solutions Si1 − x Sn x (0 ≤ x ≤ 0.04)

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Films of the solid solutions Si1 − x Sn x (0 ≤ x ≤ 0.04) on Si substrates have been grown by liquid phase epitaxy. The structural features of the films have been investigated using X-ray diffraction. The temperature behavior of current-voltage characteristics and the spectral dependence of the photocurrent for the heterostructures p-Si-n-Si1 − x Sn x (0 ≤ x ≤ 0.04) have been analyzed. The grown epitaxial films of the solid solutions Si1 − x Sn x (0 ≤ x ≤ 0.04) have a perfect single-crystal structure with a (111) orientation and a subgrain size of 60 nm. In the epitaxial films at the Si-SiO2 interfaces between silicon subgrains and SiO2 nanocrystals, where there are many sites with a high potential, the Sn ions with a high probability substitute for the Si ions and encourage the formation of Sn nanocrystals with different orientations and, as follows from the analysis of the X-ray diffraction patterns, with different sizes: 8 nm (for the (101) orientation) and 12 nm (for the (200) orientation). The current-voltage characteristics of the heterostructures p-Si-n-Si1 − x Sn x (0 ≤ x ≤ 0.04) are described by the exponential law J = J 0exp(qV/ckT) at low voltages (V < 0.2 V) and the square law J = (9qμ p τ p μ n N d /8d 3)V 2 at high voltages (V > 1 V). These results have been explained by the drift mechanism of charge carrier transport in the electrical resistance relaxation mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Fyhn, J. Lundsgaard Hansen, J. Chevallier, and A. Nylandsted Larsen, Appl. Phys. A: Mater. Sci. Process. 68(2), 259 (1999).

    Article  ADS  Google Scholar 

  2. N. Kobayashi, M. Hasegawa, H. Hayashi, H. Katsumata, Y. Makita, H. Shibata, and S. Uekusa, Mater. Res. Soc. Symp. Proc. 396, 207 (1996).

    Article  Google Scholar 

  3. B. Sapaev and A. S. Saidov, Tech. Phys. Lett. 29(11), 963 (2003).

    Article  ADS  Google Scholar 

  4. T. Soma and S. Kagaya, Phys. Status Solidi B 105, 311 (1981).

    Article  ADS  Google Scholar 

  5. T. Soma, K. Kamada, and H. Matsuo Kagaya, Phys. Status Solidi B 147, 109 (1988).

    Article  ADS  Google Scholar 

  6. V. G. Deibuk and Yu. G. Korolyuk, Semicond. Phys. Quantum Electron. Optoelectron. 8(1), 1 (2005).

    Google Scholar 

  7. R. Ragan, K. S. Min, and H. A. Atwater, Mater. Sci. Eng., B 87, 204 (2001).

    Article  Google Scholar 

  8. P. Möck, Y. Lei, T. Topuria, N. D. Browning, R. Ragan, K. S. Min, and H. A. Atwater, Mater. Res. Soc. Symp. Proc. 770, 1 (2003).

    Google Scholar 

  9. Yu. G. Korolyuk, V. G. Deibuk, and Ya. I. Vyklyuk, Zh. Fiz. Dosl. 8(1), 77 (2004).

    Google Scholar 

  10. M. S. Saidov, Geliotekhnika, No. 5, 48 (1997).

  11. M. S. Saidov, Geliotekhnika, No. 3, 52 (1999).

  12. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X-Ray and Electron-Optical Analysis (Metallurgiya, Moscow, 1970) [in Russian].

    Google Scholar 

  13. I. L. Shul’pina, R. N. Kyutt, V. V. Ratnikov, I. A. Prokhorov, I. Zh. Bezbax, and M. P. Shcheglov, Tech. Phys., 55(4), 537 (2010).

    Article  Google Scholar 

  14. Brief Reference Book of Physico-Chemical Quantities, Ed. by A. A. Ravdel’ and A. M. Ponomapeva (Khimiya, Leningrad, 1983) [in Russian].

    Google Scholar 

  15. A. M. Krivtsov and N. F. Morozov, Phys. Solid State 44(12), 2260 (2002).

    Article  ADS  Google Scholar 

  16. B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids (Metallurgiya, Moscow, 1975; Oxonian, New Delhi, 1985).

    Google Scholar 

  17. V. I. Stafeev, Sov. Phys. Tech. Phys. 3, 1502 (1958).

    Google Scholar 

  18. E. I. Adirovich, P. M. Karageorgii-Alkalaev, and A. Yu. Leiderman, Double Injection Currents in Semiconductors (Sovetskoe Radio, Moscow, 1978) [in Russian].

    Google Scholar 

  19. K. V. Shalimova, Physics of Semiconductors (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  20. A. Yu. Leidepman and M. K. Minbaeva, Semiconductors 30(10), 905 (1996).

    ADS  Google Scholar 

  21. M. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970; Mir, Moscow, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Saidov.

Additional information

Original Russian Text © A.S. Saidov, Sh.N. Usmonov, M.U. Kalanov, A.N. Kurmantayev, A.N. Bahtybayev, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 1, pp. 36–43.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saidov, A.S., Usmonov, S.N., Kalanov, M.U. et al. Structural and some electrophysical properties of the solid solutions Si1 − x Sn x (0 ≤ x ≤ 0.04). Phys. Solid State 55, 45–53 (2013). https://doi.org/10.1134/S1063783413010290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413010290

Keywords

Navigation