Skip to main content
Log in

Magnetoresistance of porous polycrystalline HTSC: Effect of the transport current on magnetic flux compression in intergranular medium

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The hysteretic dependences of the magnetoresistance of porous (38% of the theoretical density) granular high-temperature superconductor (HTSC) Bi1.8Pb0.3Sr1.9Ca2Cu3O x have been analyzed in the model of the effective intergranular field. This effective field has been defined by the superposition of the external field and the field induced by magnetic moments of superconducting grains. The magnetic flux compression in an intergranular medium, characterized by the effective field, controls the hysteretic behavior of the magnetoresistance. It has been found that the magnetoresistance hysteresis width for the studied porous HTSC depends on the transport current, in contrast to the superconductor of the same composition with high physical density (more than 90% of the theoretical value). For a porous superconductor, a significant current concentration occurs in the region of the grain boundaries, which is caused by features of its microstructure. A current-induced increase in the effective boundary length results in a decrease in the flux compression, a decrease in the effective field in the intergranular medium, and a magnetoresistance hysteresis narrowing with increasing current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982; Mir, Moscow, 1984).

    Book  Google Scholar 

  2. M. A. Dubson, S. T. Herbert, J. J. Calabrese, D. C. Harris, B. R. Patton, and J. C. Garland, Phys. Rev. Lett. 60(11), 1061 (1988).

    Article  ADS  Google Scholar 

  3. C. Gaffney, H. Petersen, and R. Bednar, Phys. Rev. B: Condens. Matter 48(5), 3388 (1993).

    Article  ADS  Google Scholar 

  4. H. S. Gamchi, G. J. Russel, and K. N. R. Taylor, Phys. Rev. B: Condens. Matter 50(17), 12950 (1994).

    Article  ADS  Google Scholar 

  5. A. V. Mitin, Physica C (Amsterdam) 235–240, 3311 (1994).

    Article  Google Scholar 

  6. L. Urba, C. Acha, and V. Bekeris, Physica C (Amsterdam) 279, 92 (1997).

    Article  ADS  Google Scholar 

  7. A. C. Wright, K. Zhang, and A. Erbil, Phys. Rev. B: Condens. Matter 44(2), 863 (1991).

    Article  ADS  Google Scholar 

  8. N. D. Kuz’michev, JETP Lett. 74(5), 262 (2001).

    Article  ADS  Google Scholar 

  9. N. D. Kuz’michev, Phys. Solid State 43(11), 2012 (2001).

    Article  ADS  Google Scholar 

  10. D. A. Balaev, K. A. Shaihutdinov, S. I. Popkov, D. M. Gokhfeld, and M. I. Petrov, Supercond. Sci. Technol. 17, 175 (2004).

    Article  ADS  Google Scholar 

  11. D. A. Balaev, A. G. Prus, K. A. Shaykhutdinov, D. M. Gokhfeld, and M. I. Petrov, Supercond. Sci. Technol. 20, 495 (2007).

    Article  ADS  Google Scholar 

  12. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 48(8), 1455 (2006).

    Article  ADS  Google Scholar 

  13. T. V. Sukhareva and V. A. Finkel’, Phys. Solid State 50(6), 1001 (2008).

    Article  ADS  Google Scholar 

  14. T. V. Sukhareva and V. A. Finkel, J. Exp. Theor. Phys. 107(5), 787 (2008).

    Article  ADS  Google Scholar 

  15. T. V. Sukhareva and V.A. Finkel, Phys. Solid State 53(5), 914 (2011).

    Article  ADS  Google Scholar 

  16. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel, Tech. Phys. 53(3), 321 (2008).

    Article  Google Scholar 

  17. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 49(10), 1829 (2007).

    Article  ADS  Google Scholar 

  18. V. V. Derevyanko, T. V. Sukhareva, V. A. Finkel, and Yu. N. Shakhov, Phys. Solid State 56(4), 649 (2014).

    Article  ADS  Google Scholar 

  19. M. A. Vasyutin, Tech. Phys. Lett. 39(12), 1078 (2013).

    Article  ADS  Google Scholar 

  20. M. Olutas, A. Kilic, K. Kilic, and A. Altinkok, J. Supercond. Novel Magn. 26, 3369 (2013).

    Article  Google Scholar 

  21. A. Altinkok, K. Kilic, M. Olutas, and A. Kilic, J. Supercond. Novel Magn. 26, 3085 (2013).

    Article  Google Scholar 

  22. D. A. Balaev, A. A. Bykov, S. V. Semenov, S. I. Popkov, A. A. Dubrovskii, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 53(5), 922 (2011).

    Article  ADS  Google Scholar 

  23. D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, D. M. Gokhfeld, S. V. Semenov, K. A. Shaykhutdinov, and M. I. Petrov, Phys. Solid State 54(11), 2155 (2012).

    Article  ADS  Google Scholar 

  24. D. A. Balaev, D. M. Gokhfel’d, A. A. Dubrovskii, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, J. Exp. Theor. Phys. 105(6), 1174 (2007).

    Article  ADS  Google Scholar 

  25. D. A. Balaev, A. A. Dubrovskii, K. A. Shaikhutdinov, S. I. Popkov, D. M. Gokhfeld, Yu. S. Gokhfeld, and M. I. Petrov, J. Exp. Theor. Phys. 108(2), 241 (2009).

    Article  ADS  Google Scholar 

  26. D. A. Balaev, S. I. Popkov, E. I. Sabitova, S. V. Semenov, K. A. Shaykhutdinov, A. V. Shabanov, and M. I. Petrov, J. Appl. Phys. 110, 093918 (2011).

    Article  ADS  Google Scholar 

  27. D. A. Balaev, S. V. Semenov, and M. I. Petrov, Phys. Solid State 55(12), 2422 (2013).

    Article  ADS  Google Scholar 

  28. D. Daghero, P. Mazzetti, A. Stepanesku, P. Tura, and A. Masoero, Phys. Rev. B: Condens. Matter 66, 184514 (2002).

    Article  ADS  Google Scholar 

  29. D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 50(6), 1014 (2008).

    Article  ADS  Google Scholar 

  30. K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and M. I. Petrov, Phys. Solid State 51(6), 1105 (2009).

    Article  ADS  Google Scholar 

  31. M. I. Petrov, T. N. Tetyueva, L. I. Kveglis, A. A. Efremov, G. M. Zeer, K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and S. G. Ovchinnikov, Tech. Phys. Lett. 29(12), 986 (2003).

    Article  ADS  Google Scholar 

  32. D. A. Balaev, I. L. Belozerova, D. M. Gokhfeld, L. V. Kashkina, Yu. I. Kuzmin, C. R. Michel, M. I. Petrov, S. I. Popkov, and K. A. Shaikhutdinov, Phys. Solid State 48(2), 207 (2006).

    Article  ADS  Google Scholar 

  33. D. M. Gokhfeld, D. A. Balaev, S. I. Popkov, K. A. Shaykhutdinov, and M. I. Petrov, Physica C (Amsterdam) 434, 135 (2006).

    Article  ADS  Google Scholar 

  34. K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and M. I. Petrov, Supercond. Sci. Technol. 20, 491 (2007).

    Article  ADS  Google Scholar 

  35. K. Yu. Terent’ev, D. M. Gokhfel’d, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 53(12), 2409 (2011).

    Article  ADS  Google Scholar 

  36. M. I. Petrov, D. A. Balaev, I. L. Belozerova, S. I. Popkov, A. A. Dubrovskii, K. A. Shaykhutdinov, and O. N. Mart’yanov, Tech. Phys. 54(8), 1130 (2009).

    Article  Google Scholar 

  37. A. D. Balaev, Yu. V. Boyarshinov, M. M. Karpenko, and B. P. Khrustalev, Prib. Tekh. Eksp., No. 3, 167 (1985).

    Google Scholar 

  38. E. B. Sonin, JETP Lett. 47(8), 496 (1988).

    ADS  Google Scholar 

  39. G. C. Han, Phys. Rev. B: Condens. Matter 52, 1309 (1995).

    Article  ADS  Google Scholar 

  40. G. C. Han and C. K. Ong, Phys. Rev. B: Condens. Matter 56, 11299 (1997).

    Article  ADS  Google Scholar 

  41. D. C. van der Laan, J. Schwartz, B. ten Haken, M. Dhalle, and H. J. N. van Eck, Phys. Rev. B: Condens. Matter 77, 104514 (2008).

    Article  ADS  Google Scholar 

  42. D. A. Balaev, S. I. Popkov, S. I. Semenov, A. A. Bykov, K. A. Shaikhutdinov, D. M. Gokhfeld, and M. I. Petrov, Physica C (Amsterdam) 470, 61 (2010).

    Article  ADS  Google Scholar 

  43. D. Hazra, L. M. A. Pascal, H. Courtois, and A. K. Gupta, Phys. Rev. B: Condens. Matter 82, 184530 (2010).

    Article  ADS  Google Scholar 

  44. D. M. Gokhfeld, D. A. Balaev, K. A. Shaykhutdinov, S. I. Popkov, and M. I. Petrov, Physica C (Amsterdam) 467, 80 (2007).

    Article  ADS  Google Scholar 

  45. Yu. I. Kuzmin, Phys. Solid State 43(7), 1199 (2001).

    Article  ADS  Google Scholar 

  46. Yu. I. Kuzmin, Tech. Phys. Lett. 29(5), 414 (2003).

    Article  ADS  Google Scholar 

  47. M. A. Vasyutin, Tech. Phys. Lett. 37(8), 743 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Balaev.

Additional information

Original Russian Text © D.A. Balaev, S.I. Popkov, K.A. Shaikhutdinov, M.I. Petrov, D.M. Gokhfeld, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 8, pp. 1492–1497.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaev, D.A., Popkov, S.I., Shaikhutdinov, K.A. et al. Magnetoresistance of porous polycrystalline HTSC: Effect of the transport current on magnetic flux compression in intergranular medium. Phys. Solid State 56, 1542–1547 (2014). https://doi.org/10.1134/S1063783414080034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414080034

Keywords

Navigation