Skip to main content
Log in

Study of the resistive switching of vertically aligned carbon nanotubes by scanning tunneling microscopy

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of an external electric field on the electromechanical properties and regularities of the resistive switching of a vertically aligned carbon nanotube (VA CNT) has been studied experimentally using scanning tunneling microscopy. It has been shown that the VA CNT resistivity ratio in the high- and low-resistance states is higher than 25 as the distance between the scanning tunneling microscope (STM) probe and the VA CNT is 1 nm at a voltage of 8 V and depends on the voltage applied between the probe and the VA CNT. The proposed mechanism of resistive switching of VA CNTs is based on an instantaneous deformation and induction of a VA CNT internal electric field as a result of the sharp change in the time derivative of the external electric field strength. The obtained results can be used for the design and fabrication of resistive energy-efficient memory elements with a high density of storage cells on the basis of vertically aligned carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Chua, Proc. IEEE 91, 1830 (2003).

    Article  Google Scholar 

  2. K. S. Vasu, S. Sampath, and A. K. Sood, Solid State Commun. 151, 1084 (2011).

    Article  ADS  Google Scholar 

  3. A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. 77(1), 139 (2000).

    Article  ADS  Google Scholar 

  4. S. Seo and M. J. Lee, Appl. Phys. Lett. 85(23), 5655 (2004).

    Article  ADS  Google Scholar 

  5. V. I. Avilov, O. A. Ageev, A. S. Kolomiitsev, B. G. Konoplev, V. A. Smirnov, and O. G. Tsukanova, Izv. Vyssh. Uchebn. Zaved., Elektron. 2(106), 50 (2014).

    Google Scholar 

  6. T. H. Kim, E. Y. Jang, N. J. Lee, D. J. Choi, K. J. Lee, J. Jang, and J. S. Choi, Nano Lett. 9, 2229 (2009).

    Article  ADS  Google Scholar 

  7. J. Yao, J. Zhong, L. Zhong, D. Natelson, and J. M. Tour, Am. Chem. Soc. 3(12), 4122 (2009).

    Google Scholar 

  8. Y. Dong, G. Yu, M. C. McAlpine, W. Lu, and C. M. Lieber, Nano Lett. 8(2), 386 (2008).

    Article  ADS  Google Scholar 

  9. M. Meyyappan, J. Phys. D: Appl. Phys. 42, 213001 (2009).

    Article  ADS  Google Scholar 

  10. O. A. Ageev, O. I. Il’in, V. S. Klimin, B. G. Konoplev, and A. A. Fedotov, Khim. Fiz. Mezoskopiya 13(2), 226 (2011).

    Google Scholar 

  11. O. A. Ageev, Yu. F. Blinov, O. I. Il’in, A. S. Kolomiitsev, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Tech. Phys. 58(12), 1831 (2013).

    Article  Google Scholar 

  12. A. D. Bartolomeo, A. Scarfato, F. Giubileo, F. Bobba, M. Biasiucci, A. M. Cucolo, S. Santucci, and M. Passacantando, Carbon 45, 2957 (2007).

    Article  Google Scholar 

  13. J.-M. Bonard and Ch. Klinke, Phys. Rev. B: Condens. Matter 67, 115406 (2003).

    Article  ADS  Google Scholar 

  14. B. Kozinsky and N. Marzari, Phys. Rev. Lett. 96, 166–801 (2006).

    Article  Google Scholar 

  15. S. L. Konsek, R. J. N. Coope, T. P. Pearsall, and T. Tiedje, Appl. Phys. Lett. 70, 1846 (1997).

    Article  ADS  Google Scholar 

  16. O. A. Ageev, O. I. Il’in, A. S. Kolomiitsev, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Nanotechnol. Russ. 7(1–2), 47 (2012).

    Article  Google Scholar 

  17. Y. Gao and Z. L. Wang, Nano Lett. 7(8), 2499 (2007).

    Article  ADS  Google Scholar 

  18. V. Golovnin, I. Kaplunov, O. Malyshkina, B. Ped’ko, and A. Movchikova, Physical Principles, Investigation Methods and Practical Application of Piezomaterials (Tekhnosfera, Moscow, 2013), p. 118 [in Russian].

    Google Scholar 

  19. B. Liu, H. Jiang, H. T. Johnson, and Y. Huang, J. Mech. Phys. Solids 52, 1 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Ageev.

Additional information

Original Russian Text © O.A. Ageev, Yu.F. Blinov, O.I. Il’in, B.G. Konoplev, M.V. Rubashkina, V.A. Smirnov, A.A. Fedotov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 4, pp. 807–813.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ageev, O.A., Blinov, Y.F., Il’in, O.I. et al. Study of the resistive switching of vertically aligned carbon nanotubes by scanning tunneling microscopy. Phys. Solid State 57, 825–831 (2015). https://doi.org/10.1134/S1063783415040034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415040034

Keywords

Navigation