Skip to main content
Log in

Raman and impedance spectroscopic studies of the specific features of the transport properties of electrolytes based on CeO2

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The solid solutions CeO2–(Sm,Nd)2O3 have been prepared by the solid-phase synthesis. The microstructure, density, and electrical conductivity of ceramic samples obtained by rolling with an organic binder, followed by sintering in air at a temperature of 1600°C have been investigated. The contributions to the total conductivity from the grain volume and grain boundaries in the temperature range of 250–700°C have been separated using impedance spectroscopy. The impedance spectroscopy data have revealed a significant effect of grain boundaries on the transport properties of the solid electrolyte with a Sm dopant as compared to the electrolyte with Nd. The optical properties of the polycrystalline electrolytes Ce1–x Nd x O2–δ and Ce0.8Sm0.2O2–δ have been studied using Raman spectroscopy. In the spectrum of the ceramic samples, there are two modes: a mode of CeO2 at a frequency of 465 cm–1 and an additional mode at a frequency of ~550 cm–1 due to vibrations associated with oxygen vacancies, the intensity of which depends on the dopant concentration and the energy of the dopant cation–oxygen vacancy bond. The binding energy of oxygen vacancies in the fluorite structure correlates with the behavior of bulk conductivity, and the solid solutions with samarium exhibit the highest bulk conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Inaba and H. Tagawa, Solid State Ionics 1, 1 (1996).

    Article  Google Scholar 

  2. M. Mogensen, N. M. Sammers, and G. A. Tompsett, Solid State Ionics 1, 63 (2000).

    Article  Google Scholar 

  3. B. C. H. Steele, J. Mater. Sci. 1, 1053 (2001).

    Article  ADS  Google Scholar 

  4. V. V. Kharton, F. M. Figuiredo, L. Navarro, E. N. Naumovich, A. V. Kovalevsky, A. A. Yaremchenko, A. P. Viskup, A. Carneiro, F. M. B. Marques, and J. Frade, J. Mater. Sci. 1, 1105 (2001).

    Article  ADS  Google Scholar 

  5. A. I. Leonov, High-Temperature Chemistry of Cerium Oxygen Compounds (Nauka, Leningrad, 1969), p. 205 [in Russian].

    Google Scholar 

  6. D.-J. Kim, J. Am. Ceram. Soc. 1, 1415 (1989).

    Article  Google Scholar 

  7. E. Yu. Pikalova, V. G. Bamburov, A. A. Murashkina, A. D. Neuimin, A. K. Demin, and S. V. Plaksin, Russ. J. Electrochem. 1 (6), 690 (2011).

    Article  Google Scholar 

  8. H. Yahiro, K. Eguchi, and H. Arai, Solid State Ionics 1, 71 (1989).

    Article  Google Scholar 

  9. E. Pikalova, V. Bamburov, I. Rukavishnikova, A. Demin, and A. Kolchugin, Energy Production and Management in the 21st Century (WIT Press, Southampton, United Kingdom, 2014), p. 261.

    Book  Google Scholar 

  10. E. G. Vaganov, V. P. Gorelov, N. M. Bogdanovich, I. V. Korzun, and V. A. Kazantsev, Russ. J. Electrochem. 1 (6), 663 (2007).

    Article  Google Scholar 

  11. Y. Wang, T. Mori, J.-G. Li, and Y. Yajima, Sci. Technol. Adv. Mater. 1, 229 (2003).

    Article  Google Scholar 

  12. R. Peng, Ch. Xia, Q. Fu, G. Meng, and D. Peng, Mater. Lett. 1, 1043 (2002).

    Article  Google Scholar 

  13. J. Van herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, Solid State Ionics 86–1, 1255 (1996).

    Article  Google Scholar 

  14. G. B. Balazs and R. S. Glass, Solid State Ionics 1, 155 (1995).

    Article  Google Scholar 

  15. H. Yahiro, Y. Eguchi, K. Eguchi, and H. Arai, J. Appl. Electrochem. 1, 527 (1988).

    Article  Google Scholar 

  16. H. Yoshida, H. Deguchi, K. Miura, M. Horiguchi, and T. Inagaki, Solid State Ionics 1, 191 (2001).

    Article  Google Scholar 

  17. D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A. Abrikosov, and B. Johansson, Proc. Natl. Acad. Sci. USA 1, 3518 (2006).

    Article  ADS  Google Scholar 

  18. S. Omar, E. D. Wachsman, and J. C. Nino, Solid State Ionics 1, 1890 (2008).

    Article  Google Scholar 

  19. E. Yu. Pikalova, A. A. Murashkina, V. I. Maragou, A. K. Demin, V. N. Strekalovsky, and P. E. Tsiakaras, Int. J. Hydrogen Energy 1, 6175 (2011).

    Article  Google Scholar 

  20. D. Medvedev, E. Pikalova, V. Maragou, A. Demin, and P. Tsiakaras, J. Power Sources 1, 217 (2013).

    Article  Google Scholar 

  21. D. Medvedev, E. Yu. Pikalova, A. Demin, A. Podias, I. Korzun, B. Antonov, and P. Tsiakaras, J. Power Sources 1, 269 (2014).

    Article  Google Scholar 

  22. Y. Ikuma, E. Shimada, and N. Nakomura, J. Am. Ceram. Soc. 1, 419 (2005).

    Article  Google Scholar 

  23. H. L. Tuller and A. S. Nowick, J. Electrochem. Soc. 1, 255 (1975).

    Article  Google Scholar 

  24. V. N. Chebotin and M. V. Perfil’ev, Electrochemistry of Solid Electrolytes (Khimiya, Moscow, 1978), p. 312 [in Russian].

    Google Scholar 

  25. C. M. Kleinlogel and L. J. Gauckleryu, J. Electroceram. 1, 231 (2000).

    Article  Google Scholar 

  26. X.-M. Lin, L.-P. Li, G.-Sh. Li, and W.-H. Su, Mater. Chem. Phys. 1, 236 (2001).

    Article  Google Scholar 

  27. G.-B. Jung, T.-J. Huang, and C.-L. Chang, J. Solid State Electrochem. 1, 225 (2002).

    Article  Google Scholar 

  28. E. Yu. Pikalova, A. A. Murashkina, and D. A. Medvedev, Russ. J. Electrochem. 1 (6), 681 (2011).

    Article  Google Scholar 

  29. P.-S. Cho, S. B. Lee, D.-S. Kim, J.-H. Lee, D.-Y. Kim, and H.-M. Park, Electrochem. Solid-State Lett. 9, A399 (2006).

    Article  Google Scholar 

  30. J. R. McBride, K. C. Hass, B. D. Poindexter, and W. H. Weber, J. Appl. Phys. 1, 2435 (1994).

    Article  ADS  Google Scholar 

  31. T. Sato and S. Tateyama, Phys. Rev. B: Condens. Matter 1, 2257 (1982).

    Article  ADS  Google Scholar 

  32. Z. D. Doh evi-Mitrovi, M. Radovi, M. Šepanovi, M. Gruji-Brojin, and Z. V. Popovi, Appl. Phys. Lett. 1, 203118 (2007).

    ADS  Google Scholar 

  33. S. A. Acharya, V. M. Gaikwad, V. Sathe, and S. K. Kulkarni, Appl. Phys. Lett. 1, 113508 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sal’nikov.

Additional information

Original Russian Text © V.V. Sal’nikov, E.Yu. Pikalova, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 10, pp. 1895–1903.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sal’nikov, V.V., Pikalova, E.Y. Raman and impedance spectroscopic studies of the specific features of the transport properties of electrolytes based on CeO2 . Phys. Solid State 57, 1944–1952 (2015). https://doi.org/10.1134/S1063783415100261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415100261

Keywords

Navigation