Skip to main content
Log in

Effect of bias voltage polarity of a substrate on the texture, microstructure, and magnetic properties of Ni films prepared by magnetron sputtering

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of the bias voltage polarity U s on microstructure, crystallographic texture and magnetic properties has been investigated for Ni films with a thickness of ≈15–420 nm, which are obtained via magnetron sputtering at a working gas pressure P corresponding to the collision-deficient flight mode of atoms of the sputtered target between the target and the substrate. The Ni(111)-textured films have been shown to form at U s ≈–100 V, whose microstructure and magnetic parameters are almost unchanged with a thickness. In contrast, the Ni(200) films are formed at U s ≈ +100 V, whose magnetic properties and micro-structure depend significantly on the thickness d that manifests in a critical thickness d* ≈ 150 nm, when the structure of the film becomes inhomogeneous in the thickness, the remagnetization loops are changed from rectangular to supercritical with the formation of the band domain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Liu, H. Pettersson, L. Michalak, C. M. Canali, D. Suyatin, and L. Samuelson, Appl. Phys. Lett. 90, 123111 (2007).

    Article  ADS  Google Scholar 

  2. J.-I. Shirakashia and Y. Takemura, J. Magn. Magn. Mater. 272–276, 1581 (2004).

    Article  Google Scholar 

  3. P. A. Deymier, J. O. Vasseur, K. Runge, A. Manchon, and O. Bou-Matar, Phys. Rev. B: Condens. Matter 90, 224421 (2014).

    Article  ADS  Google Scholar 

  4. T. Moriyama, T. J. Gudmundsen, P. Y. Huang, L. Liu, D. A. Muller, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 97, 072513 (2010).

    Article  ADS  Google Scholar 

  5. V. L. Zhang, F. S. Ma, H. H. Pan, C. S. Lin, H. S. Lim, S. C. Ng, M. H. Kuok, S. Jain, and A. O. Adeyeye, Appl. Phys. Lett 100, 163118 (2012).

    Article  ADS  Google Scholar 

  6. P. Graczyk and B. Mroz, Am. Inst. Phys. Adv. 4, 077138 (2014).

    Google Scholar 

  7. L. Dreher, M. Weiler, M. Pernpeintner, H. Huebl, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, Phys. Rev. B: Condens. Matter 86, 134415 (2012).

    Article  ADS  Google Scholar 

  8. R. F. Wiegert and M. Levy, J Appl. Phys. 64, 5411 (1988).

    Article  ADS  Google Scholar 

  9. F. Kreitmeier, D. V. Chashin, Y. K. Fetisov, L. Y. Fetisov, I. Schulz, G. J. Monkman, and M. Shamonin, Sensors 12, 14821 (2012).

    Article  Google Scholar 

  10. M. Weiler, A. Brandlmaier, S. Geprägs, M. Althammer, M. Opel, C. Bihler, H. Huebl, M. S. Brandt, R. Gross, and S. T. B. Goennenwein, New J. Phys. 11, 013021 (2009).

    Article  ADS  Google Scholar 

  11. M. R. J. Gibbs, J. Magn. Magn. Mater. 290–291,1298 (2005).

    Article  Google Scholar 

  12. T. H. Kim and J. S. Moodera, Phys. Rev. B: Condens. Matter 69, 020403 (2004).

    Article  ADS  Google Scholar 

  13. S.-M. Cherif, A. Layadi, J. Ben Youssef, C. Nacereddine, and Y. Roussigne, Physica B (Amsterdam) 387, 281 (2007).

    Article  ADS  Google Scholar 

  14. J. B. Yi, Y. Z. Zhou, and Z. J. Ding, J. Magn. Magn. Mater. 284, 303 (2004).

    Article  ADS  Google Scholar 

  15. O. Kohmoto, N. Mineji, and Y. Isagawa, J. Magn. Magn. Mater. 239, 36 (2002).

    Article  ADS  Google Scholar 

  16. A. S. Dzhumaliev, Yu. V. Nikulin, and Yu. A. Filimonov, J. Commun. Technol. Electron. 57 5, 498 (2012).

    Article  Google Scholar 

  17. C. Y. Shih, C. L. Bauer, J. Artman, and O. Artman, J. Appl. Phys. 64, 5428 (1988).

    Article  ADS  Google Scholar 

  18. E. E. Shalygina, L. V. Kozlovskii, N. M. Abrosimova, and M. A. Mukasheva, Phys. Solid State 47 4, 684 (2005).

    Article  ADS  Google Scholar 

  19. S. Hameed, P. Talagala, and R. Naik, J. Magn. Magn. Mater. 242–245, 1264 (2002).

    Article  Google Scholar 

  20. L. G. Pratibha, R. Mitra, and J. R. Weertman, Pure Appl. Chem. 74, 1519 (2002).

    Google Scholar 

  21. H. Shimizu, E. Suzuki, and Y. Hoshi, Electrochim. Acta 44, 3933 (1999).

    Article  Google Scholar 

  22. Y. Pauleau, S. Kukielka, W. Gulbinski, L. Ortega, and S. N. Dub, J. Phys. D: Appl. Phys. 39, 2803 (2006).

    Article  ADS  Google Scholar 

  23. V. V. Naumov, V. F. Bochkarev, O. S. Trushin, A. A. Goryachev, E. G. Khasanov, A. A. Lebedev, and A. S. Kunitsyn, Tech. Phys. 46 8, 1020 (2001).

    Article  Google Scholar 

  24. F. Czerwinski and J. A. Szpunar, Textures Microstruct. 34, 197 (2000).

    Article  Google Scholar 

  25. A. Y. Pavlova, Y. V. Nikulin, A. S. Dzhumaliev, Y. V. Khivintsev, A. A. Zaharov, V. L. Preobrazhensky, P. Pernod, and Y. A. Filimonov, Appl. Surf. Sci. 347, 435 (2015).

    Article  ADS  Google Scholar 

  26. A. S. Dzhumaliev, Yu. V. Nikulin, and Yu. A. Filimonov, Tech. Phys. 59 7, 1097 (2014).

    Article  Google Scholar 

  27. T. Koda and H. Toyota, J. Vac. Sci. Technol., A 32, 02B104 (2014).

    Article  Google Scholar 

  28. B. G. Priyadarshini, M. Kumar Gupta, S. Ghosh, M. Chakraborty, and S. Aich, Surf. Eng. 29, 689 (2013).

    Article  Google Scholar 

  29. P. L. Gai1, R. Mitra, and J. R. Weertman, Pure Appl. Chem. 74, 1519 (2002).

    Article  Google Scholar 

  30. T. Kazuaki, O. Yuta, and K. Keishi, J. Vac. Soc. Jpn. 49, 156 (2006).

    Article  Google Scholar 

  31. C. Nacereddine, A. Layadi, A. Guittoum, S.-M. Cherif, T. Chauveau, D. Billet, J. Ben Youssef, A. Bourzami, and M.-H. Bourahli, Mater. Sci. Eng., B 136, 197 (2007).

    Article  Google Scholar 

  32. S. Thiele, A. Reina, P. Healey, J. Kedzierski, P. Wyatt, P.-L. Hsu, C. Keast, J. Schaefer, and J. Kong, Nanotechnology 21, 015601 (2010).

    Article  ADS  Google Scholar 

  33. N. Popovic, Z. Bogdanov, B. Goncic, Z. Rakocevic, and S. Zec, Thin Solid Films 343–344, 75 (1999).

    Article  Google Scholar 

  34. P. B. Geetha, S. Aich, and M. Chakraborty, J. Mater Sci. 46, 2860 (2011).

    Article  ADS  Google Scholar 

  35. S. G. Wang, E. K. Tian, and C. W. Lung, J. Phys, Chem. Solids 61, 1295 (2000).

    Article  ADS  Google Scholar 

  36. A. S. Dzhumaliev, Yu. V. Nikulin, and Yu. A. Filimonov, Tech. Phys. Lett. 39 11, 938 (2013).

    Article  ADS  Google Scholar 

  37. D. Walton, J. Chem. Phys. 37, 2182 (1962).

    Article  ADS  Google Scholar 

  38. T. Futschek, J. Hafner, and M. Marsman, J. Phys.: Condens. Matter. 18, 9703 (2006).

    ADS  Google Scholar 

  39. S. L. Vysotskii, A. S. Dzhumaliev, S. A. Nikitov, and Yu. A. Filimonov, J. Commun. Technol. Electron. 45 2, 190 (2000).

    Google Scholar 

  40. H. Masumoto, H. Saito, and Y. Murakami, Trans. JIM 10, 119 (1969).

    Google Scholar 

  41. T.-Y. Fu and T. T. Tsong, Surf. Sci. 454–456, 571 (2000).

    Article  Google Scholar 

  42. S. Chikasumi, Physics of Ferromagnetism (Syokabo, Tokyo, 1980; Mir, Moscow, 1983).

    Google Scholar 

  43. W. H. Zhong, C. Q. Sun, and S. Li, Solid State Commun. 130, 603 (2004).

    Article  ADS  Google Scholar 

  44. R. Arias and D. L. Mills, Phys. Rev. B: Condens. Matter 63, 134439 (2001).

    Article  ADS  Google Scholar 

  45. G. S. Krinchik, Physics of Magnetic Phenomena (Moscow State University, Moscow, 1985) [in Russian].

    Google Scholar 

  46. Handbook of Thin Film Technology, Ed. by L. I. Maissel and R. Glang (McGraw-Hill, New York, 1970; Sovetskoe Radio, Moscow, 1977), Vol. 2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Nikulin.

Additional information

Original Russian Text © A.S. Dzhumaliev, Yu.V. Nikulin, Yu.A. Filimonov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 6, pp. 1206–1215.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhumaliev, A.S., Nikulin, Y.V. & Filimonov, Y.A. Effect of bias voltage polarity of a substrate on the texture, microstructure, and magnetic properties of Ni films prepared by magnetron sputtering. Phys. Solid State 58, 1247–1256 (2016). https://doi.org/10.1134/S1063783416060135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416060135

Navigation