Skip to main content
Log in

Symmetric scrolled packings of multilayered carbon nanoribbons

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L –1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  3. C. Soldano, A. Mahmood, and E. Dujardin, Carbon 48, 2127 (2010).

    Article  Google Scholar 

  4. J. A. Baimova, B. Liu, S. V. Dmitriev, and K. Zhou, Phys. Status Solidi R 8, 336 (2014).

    Article  Google Scholar 

  5. J. A. Baimova, B. Liu, S. V. Dmitriev, N. Srikanth, and K. Zhou, Phys. Chem. Chem. Phys. 16, 19505 (2014).

    Article  Google Scholar 

  6. J. A. Baimova, E. A. Korznikova, S. V. Dmitriev, B. Liu, and K. Zhou, Rev. Adv. Mater. Sci. 39, 69 (2014).

    Google Scholar 

  7. A. V. Orlov and I. A. Ovid’ko, Rev. Adv. Mater. Sci. 40, 249 (2015).

    Google Scholar 

  8. Z. Xu and M. J. Buehler, ACS Nano 4, 3869 (2010).

    Article  Google Scholar 

  9. W. Li, X. Zheng, B. Liu, X. Sun, T. Wang, J. Zhang, and Y. Yan, Carbon 89, 272 (2015).

    Article  Google Scholar 

  10. W. Bollmann and J. Spreadborough, Nature (London) 186, 29 (1960).

    Article  ADS  Google Scholar 

  11. S. Zhu and T. Li, J. Phys. D: Appl. Phys. 46, 075301 (2013).

    Article  ADS  Google Scholar 

  12. G. Cheng, I. Calizo, X. Liang, B. A. Sperling, A. C. Johnston-Peck, W. Li, J. E. Maslar, C. A. Richtera, and A. R. H. Walker, Carbon 76, 257 (2014).

    Article  Google Scholar 

  13. H. Q. Zhou, C. Y. Qiu, H. C. Yang, F. Yu, M. J. Chen, L. J. Hu, Y. J. Guo, and L. F. Sun, Chem. Phys. Lett. 501, 475 (2011).

    Article  ADS  Google Scholar 

  14. X. Chen, R. A. Boulos, J. F. Dobson, and C. L. Raston, Nanoscale 5, 498 (2013).

    Article  ADS  Google Scholar 

  15. M. V. Savoskin, V. N. Mochalin, A. P. Yaroshenko, N. I. Lazareva, T. E. Konstantinova, I. V. Barsukov, and I. G. Prokofiev, Carbon 45, 2797 (2007).

    Article  Google Scholar 

  16. X. Xie, L. Ju, X. Feng, Y. Sun, R. Zhou, K. Liu, S. Fan, Q. Li, and K. Jiang, Nano Lett. 9, 2565 (2009).

    Article  ADS  Google Scholar 

  17. A. L. Chuvilin, V. L. Kuznetsov, and A. N. Obraztsov, Carbon 47, 3099 (2009).

    Article  Google Scholar 

  18. H. Pan, Y. Feng, and J. Lin, Phys. Rev. B: Condens. Matter 72, 085415 (2005).

    Article  ADS  Google Scholar 

  19. R. Rurali, V. R. Coluci, and D. S. Galvao, Phys. Rev. B: Condens. Matter 74, 085414 (2006).

    Article  ADS  Google Scholar 

  20. Y. Chen, J. Lu, and Z. Gao, J. Phys. Chem. C 111, 1625 (2007).

    Article  Google Scholar 

  21. X. Shi, N. M. Pugno, Y. Cheng, and H. Gao, J. Appl. Phys. 95, 163113 (2009).

    Google Scholar 

  22. B. V. C. Martins and D. S. Galvao, Nanotechnology 21, 075710 (2010).

    Article  ADS  Google Scholar 

  23. S. Huang, B. Wang, M. Feng, X. Xu, X. Cao, and Y. Wang, Surf. Sci. 634, 3 (2015).

    Article  ADS  Google Scholar 

  24. E. Perim, R. Paupitz, and D. S. Galvao, J. Appl. Phys. 113, 054306 (2013).

    Article  ADS  Google Scholar 

  25. Y. Wang, H. F. Zhan, C. Yang, Y. Xiang, and Y. Y. Zhang, Comput. Mater. Sci. 96, 300 (2015).

    Article  Google Scholar 

  26. X. Shi, Y. Cheng, N. M. Pugno, and H. Gao, J. Appl. Phys. 96, 053115 (2010).

    Google Scholar 

  27. Z. Zhang and T. Li, Appl. Phys. Lett. 97, 081909 (2010).

    Article  ADS  Google Scholar 

  28. L. Chu, Q. Xue, T. Zhang, and C. Ling, J. Phys. Chem. C 115, 15217 (2011).

    Article  Google Scholar 

  29. N. Patra, Y. Song, and P. Kral, ACS Nano 5, 1798 (2011).

    Article  Google Scholar 

  30. H. Y. Song, S. F. Geng, M. R. An, and X. W. Zha, J. Appl. Phys. 113, 164305 (2013).

    Article  ADS  Google Scholar 

  31. Q. Yin and X. Shi, Nanoscale 5 12, 5450 (2013).

    Article  ADS  Google Scholar 

  32. L. J. Yi, Y. Y. Zhang, C. M. Wang, and T. C. Chang, J. Appl. Phys. 115, 204307 (2014)

    Article  ADS  Google Scholar 

  33. L. J. Yi, Y. Y. Zhang, C. M. Wang, and T. C. Chang, Nanoscale 5, 5450 (2013).

    Article  ADS  Google Scholar 

  34. Z. Zhang, Y. Huang, and T. Li, J. Appl. Phys. 112, 063515 (2012).

    Article  ADS  Google Scholar 

  35. X. Shi, N. M. Pugno, and H. Gao, Acta Mech. Solida Sin. 23, 484 (2010).

    Article  Google Scholar 

  36. X. Shi, N. M. Pugno, and H. Gao, Int. J. Fract. 171, 163 (2011).

    Article  Google Scholar 

  37. V. R. Coluci, S. F. Braga, R. H. Baughman, and D. S. Galvao, Phys. Rev. B: Condens. Matter 75, 125404 (2007).

    Article  ADS  Google Scholar 

  38. S. F. Braga, V. R. Coluci, R. H. Baughman, and D. S. Galvao, Chem. Phys. Lett. 441, 78 (2007).

    Article  ADS  Google Scholar 

  39. X. Shi, Y. Cheng, N. M. Pugno, and H. Gao, Small 6, 739 (2010).

    Article  Google Scholar 

  40. X. Shi, Q. Yin, N. M. Pugno, and H. Gao, J. Appl. Mech. 81, 1014 (2013).

    Google Scholar 

  41. F. Zeng, Y. Kuang, G. Liu, R. Liu, Z. Huang, C. Fu, and H. Zhou, Nanoscale 4, 3997 (2012).

    Article  ADS  Google Scholar 

  42. Y. Pan, F. Zeng, Z. Huang, H. Zhou, and Y. Kuang, Electrochim. Acta 172, 71 (2015).

    Article  Google Scholar 

  43. P.-H. Tan, J.-B. Wu, W.-P. Han, W.-J. Zhao, and X. Zhang, Phys. Rev. B: Condens. Matter 89, 235404 (2014).

    Article  ADS  Google Scholar 

  44. A. V. Savin, Y. S. Kivshar, and B. Hu, Phys. Rev. B: Condens. Matter 82, 195422 (2010).

    Article  ADS  Google Scholar 

  45. A. V. Savin and Yu. S. Kivshar, Europhys. Lett. 82, 66002 (2008).

    Article  ADS  Google Scholar 

  46. A. V. Savin, Y. S. Kivshar, and B. Hu. Europhys. Lett. 88, 26004 (2009).

    Article  ADS  Google Scholar 

  47. A. V. Savin, B. Hu, and Y. S. Kivshar, Phys. Rev. B: Condens. Matter 80, 195423 (2009).

    Article  ADS  Google Scholar 

  48. A. V. Savin and Y. S. Kivshar, Appl. Phys. Lett. 94, 111903 (2009).

    Article  ADS  Google Scholar 

  49. A. V. Savin and Y. S. Kivshar, Europhys. Lett. 89, 46001 (2010).

    Article  ADS  Google Scholar 

  50. A. V. Savin and Y. S. Kivshar, Phys. Rev. B: Condens. Matter 81, 165418 (2010).

    Article  ADS  Google Scholar 

  51. E. A. Korznikova, A. V. Savin, Y. A. Baimova, S. V. Dmitriev, and R. R. Mulyukov, JETP Lett. 96 4, 222 (2012).

    Article  ADS  Google Scholar 

  52. E. A. Korznikova, J. A. Baimova, and S. V. Dmitriev, Europhys. Lett. 102, 60004 (2013).

    Article  ADS  Google Scholar 

  53. J. A. Baimova, S. V. Dmitriev, and K. Zhou, Europhys. Lett. 100, 36005 (2012).

    Article  ADS  Google Scholar 

  54. J. A. Baimova, S. V. Dmitriev, K. Zhou, and A. V. Savin, Phys. Rev. B: Condens. Matter 86, 035427 (2012).

    Article  ADS  Google Scholar 

  55. S. V. Dmitriev, Y. A. Baimova, A. V. Savin, and Y. S. Kivshar’, JETP Lett. 93 10, 571 (2011).

    Article  ADS  Google Scholar 

  56. Y. A. Baimova, S. V. Dmitriev, A. V. Savin, and Y. S. Kivshar’, Phys. Solid State 54 4, 866 (2012).

    Article  ADS  Google Scholar 

  57. E. A. Korznikova and S. V. Dmitriev, J. Phys. D: Appl. Phys. 47, 345307 (2014).

    Article  Google Scholar 

  58. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Rev. B: Condens. Matter 92, 035412 (2015).

    Article  ADS  Google Scholar 

  59. A. V. Savin, E. A. Korznikova, and S. V. Dmitriev, Phys. Solid State 57 11, 2348 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savin.

Additional information

Original Russian Text © A.V. Savin, E.A. Korznikova, I.P. Lobzenko, Yu.A. Baimova, S.V. Dmitriev, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 6, pp. 1236–1242.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, A.V., Korznikova, E.A., Lobzenko, I.P. et al. Symmetric scrolled packings of multilayered carbon nanoribbons. Phys. Solid State 58, 1278–1284 (2016). https://doi.org/10.1134/S1063783416060317

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416060317

Navigation