Skip to main content
Log in

Thermal, optical, and dielectric properties of fluoride Rb2TaF7

  • Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The thermal, optical, and dielectric properties of fluoride Rb2TaF7 were investigated. It was observed that the variation in chemical pressure in fluorides A 2 +TaF7 caused by the cation substitution of rubidium for ammonium does not affect the ferroelastic nature of structural distortions, but leads to stabilization of the high- and low-temperature phases and enhancement of birefringence. The entropy of the phase transition P4/nmmCmma is typical of the shift transformations, which is consistent with a model of the initial and distorted phase structures. The anisotropy of chemical pressure causes the change of signs of the anomalous strain and baric coefficient dT/dp of Rb2TaF7 as compared with the values for its ammonium analog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Tressaud, Functionalized Inorganic Fluorides (Wiley-Blackwell, Chichester, 2010).

    Book  Google Scholar 

  2. M. Leblanc, V. Maisonneuve, and A. Tressaud, Chem. Rev. 115, 1191 (2015).

    Article  Google Scholar 

  3. I. Flerov, M. Gorev, K. Aleksandrov, A. Tressaud, J. Grannec, and M. Couzi, Mater. Sci. Eng., R 24, 81 (1998).

    Article  Google Scholar 

  4. I. N. Flerov, M. V. Gorev, M. S. Molokeev, and N. M. Laptash, in Photonic and Electronic Properties of Fluoride Materials, Ed. by A. Tressaud and K. Poeppelmeier (Elsevier, Amsterdam, 2016), Chap. 16.

  5. I. N. Flerov, M. V. Gorev, A. Tressaud, and N. M. Laptash, Crystallogr. Rep. 56 (1), 9 (2011).

    Article  ADS  Google Scholar 

  6. E. C. Reynhardt, J. C. Pratt, A. Watton, and H. E. Petch, J. Phys. C: Solid State Phys. 14, 4701 (1981).

    Article  ADS  Google Scholar 

  7. R. B. English, A. M. Heyns, and E. C. Reynhardt, J. Phys. C: Solid State Phys. 16, 829 (1983).

    Article  ADS  Google Scholar 

  8. L.-S. Du, R. W. Schurko, K. H. Lim, and C. P. Grey, J. Phys. Chem. A 105, 760 (2001).

    Article  Google Scholar 

  9. V. D. Fokina, M. V. Gorev, E. V. Bogdanov, E. I. Pogoreltsev, I. N. Flerov, and N. M. Laptash, J. Fluor. Chem. 154, 1 (2013).

    Article  Google Scholar 

  10. A. M. Rodriguez, M. C. Caracoche, J. A. Martinez, and A. R. Lopez Garcia, Hyperfine Interact. 30, 277 (1986).

    Article  ADS  Google Scholar 

  11. V. D. Fokina, I. N. Flerov, M. V. Gorev, E. V. Bogdanov, A. F. Bovina, and N. M. Laptash, Phys. Solid State 49 (8), 1548 (2007).

    Article  ADS  Google Scholar 

  12. V. D. Fokina, A. F. Bovina, E. V. Bogdanov, E. I. Pogorel’tsev, N. M. Laptash, M. V. Gorev, and I. N. Flerov, Phys. Solid State 53 (10), 2147 (2011).

    Article  ADS  Google Scholar 

  13. I. N. Flerov, I. N. Gorev, V. D. Fokina, A. F. Bovina, E. V. Bogdanov, E. I. Pogoreltsev, and N. M. Laptash, J. Fluorine Chem. 132, 713 (2011).

    Article  Google Scholar 

  14. W. Weber and E. Schweda, Mater. Sci. Forum 228, 353 (1996).

    Article  Google Scholar 

  15. N. M. Laptash, A. A. Udovenko, and T. B. Emelina, J. Fluorine Chem. 132, 1152 (2011).

    Article  Google Scholar 

  16. E. I. Pogorel’tsev, S. V. Mel’nikova, A. V. Kartashev, M. S. Molokeev, M. V. Gorev, I. N. Flerov, and N. M. Laptash, Phys. Solid State 55 (3), 611 (2013).

    Article  ADS  Google Scholar 

  17. V. S. Bondarev, A. V. Kartashev, A. G. Kozlov, I. Ya. Makievskii, I. N. Flerov, and M. V. Gorev, Preprint No. 829F, IF SO RAN (Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, 2005).

    Google Scholar 

  18. I. N. Flerov, V. D. Fokina, A. F. Bovina, E. V. Bogdanov, M. S. Molokeev, A. G. Kocharova, E. I. Pogorel’tsev, and N. M. Laptash, Phys. Solid State 50 (3), 515 (2008).

    Article  ADS  Google Scholar 

  19. V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Nauka, Moscow, 1964, Butterworth–Heinemann, Oxford, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Pogorel’tsev.

Additional information

Original Russian Text © E.I. Pogorel’tsev, S.V. Mel’nikova, A.V. Kartashev, M.V. Gorev, I.N. Flerov, N.M. Laptash, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 5, pp. 959–964.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogorel’tsev, E.I., Mel’nikova, S.V., Kartashev, A.V. et al. Thermal, optical, and dielectric properties of fluoride Rb2TaF7 . Phys. Solid State 59, 986–991 (2017). https://doi.org/10.1134/S1063783417050250

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417050250

Navigation