Skip to main content
Log in

Shape Effect in Layering of Solid Solutions in Small Volume: Bismuth–Antimony Alloy

  • Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The regularities of the effect of the shape of interphase boundaries in small volume systems on the separation of solutions with an upper critical solution temperature (UCST) are described by the example of Bi–Sb alloy particles with a core–shell configuration. The change in the shape of interphase boundaries is simulated in general by introducing a parameter corresponding to the degree of deviation of the shape of the boundaries from the spherical one. An analysis of the extrema of the Gibbs function revealed regularities in the effect of the shape of the core and shell phases on phase equilibria, the thermodynamic stability of heterogeneous states, and the phase separation diagram. The deviation of the shape of the interphase boundaries from the spherical shape changes the UCST and the mutual solubility of the components. The deformation of the shell of a core–shell particle increases the thermodynamic stability of the heterogeneous state, which contributes to the separation of the solution. The deformation of the core lowers the thermodynamic stability of the heterogeneous state and expands the range of metastable states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. I. Petrov, Physics of Small Particles (Nauka, Moscow, 2015) [in Russian].

    Google Scholar 

  2. L. H. Liang, D. Liu, and Q. Jiang, Nanotechnology 14, 438 (2003).

    Article  ADS  Google Scholar 

  3. Y. Dahan, G. Makov, and R. Z. Shneck, CALPHAD 53, 136 (2016).

    Article  Google Scholar 

  4. A. Roshanghias, J. Vřeštál, A. Yakymovych, K. W. Richter, and H. Ipser, CALPHAD 49, 101 (2015).

    Article  Google Scholar 

  5. J. Lee and K. J. Sim, CALPHAD 44, 129 (2014).

    Article  Google Scholar 

  6. Y. Eichhammer, M. Heyns, and N. Moelans, CALPHAD 35, 173 (2011).

    Article  Google Scholar 

  7. M. Ghasemi, Z. Zanolli, M. Stankovski, and J. Johansson, Nanoscale 7, 17387 (2015).

    Article  ADS  Google Scholar 

  8. G. Garzel, J. Janczak-Rusch, and L. Zabdyr, CALPHAD 36, 52 (2012).

    Article  Google Scholar 

  9. L. D. Marks and L. Peng, J. Phys.: Condens. Matter 28, 53001 (2016).

    ADS  Google Scholar 

  10. S. Bajaj, M. Haverty, R. Arróyave, W. A. Goddard, and S. Shankar, Nanoscale 7, 9868 (2015).

    Article  ADS  Google Scholar 

  11. A. S. Shirinyan, M. Wautelet, and Y. Belogorodsky, J. Phys.: Condens. Matter 18, 2537 (2006).

    ADS  Google Scholar 

  12. V. B. Fedoseev, A. V. Shishulin, E. K. Titaeva, and E. N. Fedoseeva, Phys. Solid State 58, 2095 (2016).

    Article  ADS  Google Scholar 

  13. E. A. Sutter and P. W. Sutter, ACS Nano 4, 4943 (2010).

    Article  Google Scholar 

  14. G. Guisbiers, R. Mendoza-Pérez, L. Bazán-Díaz, R. Mendoza-Cruz, J. J. Velázquez-Salazar, and M. J. Yakamán, J. Phys. Chem. C 121, 6930 (2017).

    Article  Google Scholar 

  15. G. Guisbiers. S. Mejía-Rosales, S. Khanal, F, Ruiz-Zapeda, R. L. Whetten, and M. J. Yakamán, Nano Lett. 14, 6718 (2014).

    Article  ADS  Google Scholar 

  16. V. B. Fedoseev, Phys. Solid State 57, 599 (2015).

    Article  ADS  Google Scholar 

  17. V. B. Fedoseev and E. N. Fedoseeva, JETP Lett. 97, 408 (2013).

    Article  ADS  Google Scholar 

  18. V. B. Fedoseev and E. N. Fedoseeva, Russ. J. Phys. Chem. A 88, 436 (2014).

    Article  Google Scholar 

  19. J. Park and J. Lee, CALPHAD 32, 135 (2008).

    Article  Google Scholar 

  20. T. Tanaka and S. Hara, Zeitschr. Met. 92, 1236 (2001).

    Google Scholar 

  21. D. Cholakova, N. D. Denkov, S. Tcholakova, I. Lesov, and S. K. Smoukov, Adv. Colloid Int. Sci. 235, 90 (2016).

    Article  Google Scholar 

  22. A. H. Gröschel and A. H. E. Müller, Nanoscale 7, 11841 (2015).

    Article  ADS  Google Scholar 

  23. M. N. Magomedov, Tech. Phys. 61, 722 (2016).

    Article  Google Scholar 

  24. V. B. Fedoseev, A. A. Potapov, A. V. Shishulin, and E. N. Fedoseeva, Eur. Phys. Tech. J. 14, 18 (2017).

    Google Scholar 

  25. M. A. Bykov, G. F. Voronin, and N. M. Mukhamedzhanova, in Direct and Inverse Problems of Chemical Thermodynamics, Collection of Articles (Nauka, Novosibirsk, 1987), p. 30 [in Russian].

    Google Scholar 

  26. D. Hourlier and P. Perrot, Mater. Sci. Forum 653, 77 (2010).

    Article  Google Scholar 

  27. Physical Values, The Handbook, Ed. by I. S. Grigorev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991).

    Google Scholar 

  28. M. O. Kliya, Kristallografiya 1, 577 (1956).

    Google Scholar 

  29. V. B. Fedoseev, Nelinein. Din. 13, 195 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shishulin.

Additional information

Original Russian Text © V.B. Fedoseev, A.V. Shishulin, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 7, pp. 1382–1388.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseev, V.B., Shishulin, A.V. Shape Effect in Layering of Solid Solutions in Small Volume: Bismuth–Antimony Alloy. Phys. Solid State 60, 1398–1404 (2018). https://doi.org/10.1134/S1063783418070120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418070120

Navigation