Skip to main content
Log in

Critical Phase-Transition Current in Niobium Nitride Thin Films

  • SUPERCONDUCTIVITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract—The effect of current and magnetic field on the transition to the superconducting state in niobium nitride thin films has been studied. The critical current dependences of the films on the temperature and magnetic field in the transition region have been determined. Within the framework of models of a normal domain and quasiparticle heating during viscous flow of a magnetic flux, the functional dependences of the critical current have been determined in close vicinity of the superconducting transition temperature. Using the theory of electron heating, we have determined the time of the electron energy relaxation. We also estimated the electron-phonon and the electron-electron inelastic scattering times, the diffusion coefficient of electrons, and heat transfer coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. Shurakov, Y. Lobanov, and G. Goltsman, Supercond. Sci. Technol. 29, 023001 (2016).

    Article  ADS  Google Scholar 

  2. K. Smirnov, A. Divochiy, Yu. Vakhtomin, P. Morozov, Ph. Zolotov, A. Antipov, and V. Seleznev, Supercond. Sci. Technol. 31, 035011 (2018).

    Article  ADS  Google Scholar 

  3. T. Wakamura, H. Akaike, Y. Omori, Y. Niimi, S. Takahashi, A. Fujimaki, S. Maekawa, and Y. Otani, Nat. Mater. 14, 675 (2015).

    Article  ADS  Google Scholar 

  4. J. Yong, T. R. Lemberger, L. Benfatto, K. Ilin, and M. Siegel, Phys. Rev. B 87, 184505 (2013).

    Article  ADS  Google Scholar 

  5. J. Jesudasan, M. Mondal, M. Chand, A. Kamlapure, S. Kumar, G. Saraswat, V. C. Bagwe, V. Tripathi, and P. Raychaudhuri, AIP Conf. Proc. 1349, 923 (2011).

    Article  ADS  Google Scholar 

  6. N. D. Kuz’michev and G. P. Motulevich, Sov. Phys. JETP 57, 1351 (1983).

    Google Scholar 

  7. R. Jha, A. Kumar, and V. P. S. Awana, AIP Conf. Proc. 1447, 867 (2012).

    Article  ADS  Google Scholar 

  8. M. A. Vasyutin, A. I. Golovashkin, and N. D. Kuz’michev, Phys. Solid State 48, 2250 (2006).

    Article  ADS  Google Scholar 

  9. N. D. Kuzmichev, M. A. Vasyutin, and A. I. Golovashkin, Phys. C (Amsterdam, Neth.) 460462, 849 (2007).

  10. M. A. Vasyutin, A. I. Golovashkin, and N. D. Kuz’michev, Bull. Lebedev Phys. Inst. 35, 286 (2008).

    Article  ADS  Google Scholar 

  11. D. A. Balaev, S. V. Semenov, and M. I. Petrov, Phys. Solid State 55, 2422 (2013).

    Article  ADS  Google Scholar 

  12. R. Matsunaga et al., Science (Washington, DC, U. S.) 345, 1145 (2014).

    Article  ADS  Google Scholar 

  13. D. Sherman, U. S. Pracht, B. Gorshunov, S. Poran, J. Jesudasan, M. Chand, P. Raychaudhuri, M. Swanson, N. Trivedi, A. Auerbach, M. Scheffler, A. Frydman, and M. Dressel, Nat. Phys. 11, 188 (2015).

    Article  Google Scholar 

  14. C. Carbillet, S. Caprara, M. Grilli, C. Brun, T. Cren, F. Debontridder, B. Vignolle, W. Tabis, D. Demaille, L. Largeau, K. Ilin, M. Siegel, D. Roditchev, and B. Leridon, Phys. Rev. B 93, 144509 (2016).

    Article  ADS  Google Scholar 

  15. Z. Wang, A. Kawakami, Y. Uzawa, and B. Komiyama, J. Appl. Phys. 79, 7837 (1996).

    Article  ADS  Google Scholar 

  16. M. A. Vasyutin, N. D. Kuz’michev, and D. A. Shilkin, Phys. Solid State 58, 236 (2016).

    Article  ADS  Google Scholar 

  17. A. I. Bezuglyi, Fiz. Nizk. Temp. 26, 755 (2000).

    Google Scholar 

  18. A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 41, 960 (1975).

    ADS  Google Scholar 

  19. A. I. Bezuglyi and V. A. Shklovskij, Phys. C (Amsterdam, Neth.) 202, 234 (1992).

  20. A. G. Kalimov, Physical Principles of Superconductivity (St. Petersburg, 2007), p. 92 [in Russian].

    Google Scholar 

  21. A. A. Abrikosov, Principles of the Theory of Metals (Nauka, Moscow, 1987), p. 301 [in Russian].

    Google Scholar 

  22. S.-Z. Lin, O. Ayala-Valenzuela, R. D. McDonald, L. N. Bulaevskii, T. G. Holesinger, F. Ronning, N. R. Weisse-Bernstein, T. L. Williamson, A. H. Mueller, M. A. Hoffbauer, M. W. Rabin, and M. J. Graf, Phys. Rev. B 87, 184507 (2013).

    Article  ADS  Google Scholar 

  23. G. V. Samsonov, Nitrides (Nauk. Dumka, Kiev, 1969), p. 181 [in Russian].

    Google Scholar 

  24. W. Klein, R. P. Huebener, S. Gauss, and J. Parisi, J. Low Temp. Phys. 61, 413 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Vasyutin.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasyutin, M.A., Kuz’michev, N.D. & Shilkin, D.A. Critical Phase-Transition Current in Niobium Nitride Thin Films. Phys. Solid State 60, 2287–2290 (2018). https://doi.org/10.1134/S1063783418110343

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418110343

Keywords

Navigation