Skip to main content
Log in

Nonequilibrium Diffusional Phase Transformations in Alloys Induced by Migration of Grain Boundaries and Dislocations

  • PHASE TRANSITIONS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The main scenarios of nonequilibrium diffusional transformations induced by moving defects (dislocations, grain boundaries) in alloys under severe plastic deformation are considered. It has been shown that the phase state locally changes in the area of a defect where thermodynamic properties of alloy are locally changed, and the attained state is frozen after the displacement of a defect due to the difference between the rates of bulk diffusion and diffusion on a defect. For this reason, an alloy shifts from the state of its thermodynamic equilibrium under treatment, thus different nonequilibrium states, such as the disordering of alloy, the dissolution of equilibrium phase precipitates, the appearance of nonequilibrium phases, and the formation of regular structures, are possible depending on the type of the system. These effects may take place if the treatment of an alloy is performed at moderate temperatures, when diffusion is frozen in the bulk and rather active on defects. The phenomena of phase and structural instability developing under severe plastic deformation at moderate temperatures are considered within the framework of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. E. Ermakov, Fiz. Met. Metalloved., No. 11, 4 (1991).

  2. H. Bakker, P. I. Loeff, and A. W. Weeber, Def. Dif. Forum 66–69, 1169 (1989).

    Google Scholar 

  3. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  Google Scholar 

  4. V. V. Sagaradze and V. A. Shabashov, Phys. Met. Metallogr. 112, 146 (2011).

    Article  ADS  Google Scholar 

  5. A. G. Popov, V. S. Gaviko, and N. N. Shchegoleva, L. A. Shreder, V. V. Stolyarov, D. V. Gunderov, X. Y. Zhang, W. Li, and L. L. Li, Phys. Met. Metallogr. 104, 238 (2007).

    Article  ADS  Google Scholar 

  6. A. G. Popov, V. S. Gaviko, A. S. Ermolenko, N. N. Shchegoleva, V. V. Stolyarov, and D. V. Gunderov, in Structure and Properties of Nanocrystalline Materials, Collection of Articles (Yekaterinburg, 1999) [in Russian].

    Google Scholar 

  7. V. A. Tsurin, V. A. Barinov, and S. B. Pupyshev, Tech. Phys. Lett. 21, 449 (1995).

    ADS  Google Scholar 

  8. F. Wu, D. Isheim, P. Bellon, and D. N. Seidman, Acta Mater. 54, 2605 (2006).

    Article  Google Scholar 

  9. G. le Caër, S. Begin-Colin, and P. Delcroix, in Materials Research in Atomic Scale by Mössbauer Spectroscopy, Ed. by M. Mashlan, M. Miglierini, and P. Schaaf (Springer, Dordrecht, 2003), p. 11.

    Google Scholar 

  10. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, E. Rabkin, D. Goll, G. Schutz, B. Baretzky, and R. Z. Valiev, J. Mater. Sci. 47, 360 (2012).

    Article  ADS  Google Scholar 

  11. O. S. Novikova and A. Yu. Volkov, Phys. Met. Metallogr. 114, 162 (2013).

    Article  ADS  Google Scholar 

  12. M. Herbig, D. Raabe, Y. J. Li, P. Choi, S. Zaefferer, and S. Goto, Phys. Rev. Lett. 112, 126103 (2014).

    Article  ADS  Google Scholar 

  13. B. B. Straumal, B. Baretzky, A. A. Mazilkin, F. Philipp, O. A. Kogtenkova, M. N. Volkov, and R. Z. Valiev, Acta Mater. 52, 4469 (2004).

    Article  Google Scholar 

  14. X. Sauvage, A. Ganeev, Y. Ivanisenko, N. Enikeev, M. Murashkin, and R. Valiev, Adv. Eng. Mater. 14, 968 (2012).

    Article  Google Scholar 

  15. H. Bakker, G. F. Zhou, and H. Yang, Prog. Mater. Sci. 39, 159 (1995).

    Article  Google Scholar 

  16. P. Bellon and R. Averback, Phys. Rev. Lett. 74, 1819 (1995).

    Article  ADS  Google Scholar 

  17. G. Martin and P. Bellon, Solid State Phys. 50, 189 (1997).

    Article  Google Scholar 

  18. G. A. Dorofeev and E. P. Elsukov, Phys. Met. Metallogr. 103, 593 (2007).

    Article  ADS  Google Scholar 

  19. E. P. Yelsukov, G. A. Dorofeev, V. A. Barinov, T. F. Grigor’eva, and V. V. Boldyrev, Mater. Sci. Forum 269–272, 151 (1998).

    Article  Google Scholar 

  20. V. V. Rybin, Large Plastic Deformations and Fracture of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  21. J. Eckert, J. Holzer, C. Krill, and W. Johnson, J. Appl. Phys. 73, 2794 (1993).

    Article  ADS  Google Scholar 

  22. M. A. Shtremel’, Metal Sci. Heat Treatment 8, 10 (2002).

    Google Scholar 

  23. H. Gleiter, Acta Meter. 16, 455 (1968).

    Article  Google Scholar 

  24. B. Ya. Lyubov and V. A. Shmakov, Fiz. Met. Metalloved. 29, 968 (1970).

    Google Scholar 

  25. B. Ya. Lyubov, Diffusion Processes in Non-Homogeneous Solid Media (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  26. L. E. Karkina, I. N. Karkin, A. R. Kuznetsov, I. K. Razumov, P. A. Korzhavyi, and Yu. N. Gornostyrev, Comput. Mater. Sci. 112, 18 (2016).

    Article  Google Scholar 

  27. A. Y. Lozovoi, A. T. Paxton, and M. W. Finnis, Phys. Rev. B 74, 155416 (2006).

    Article  ADS  Google Scholar 

  28. R. W. K. Honeycombe, Plastic Deformation of Metals (Hodder Arnold, London, 1984).

    Google Scholar 

  29. B. Q. Li and F. E. Wanter, Acta Mater. 46, 5483 (1998).

  30. A. R. Yavari, P. J. Desré, and T. Benameur, Phys. Rev. Lett. 68, 2235 (1992).

    Article  ADS  Google Scholar 

  31. I. K. Razumov, Russ. J. Phys. Chem. A 84, 1485 (2010).

    Article  Google Scholar 

  32. R. D. Doherty, Met. Sci. 16, 1 (1982).

    Article  Google Scholar 

  33. H. Octor and S. Naka, Philos. Mag. Lett. 59, 229 (1989).

    Article  ADS  Google Scholar 

  34. S. Naka, H. Octor, E. Bouchaud, and T. Khan, Scripta Met. 23, 501 (1989).

    Article  Google Scholar 

  35. E. Bouchaud, S. Naka, and H. Octor, Colloq. Phys. 51, 451 (1990).

    Google Scholar 

  36. A. M. Glezer and M. S. Metlov, Phys. Solid State 52, 1162 (2010).

    Article  ADS  Google Scholar 

  37. J. W. Cahn, Acta Met. 10, 789 (1962).

    Article  Google Scholar 

  38. K. Lücke and H. P. Stüwe, Acta Met. 19, 1087 (1971).

    Article  Google Scholar 

  39. P. Lejček, Springer Ser. Mater. Sci. 136, 1 (Springer, Berlin, 2010).

    Google Scholar 

  40. G. Gottstein and L. S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (CRC, Boca Raton, 1999).

    Google Scholar 

  41. P. R. Cha, S. G. Kim, D. H. Yeon, and J. K. Yoon, Acta Mater. 50, 3817 (2002).

    Article  Google Scholar 

  42. J. Li, J. Wang, and G. Yang, Acta Mater. 57, 2108 (2009).

    Article  Google Scholar 

  43. A. G. Khachaturyan, The Theory of Phase Transitions and Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  44. J.-F. Gouyet, M. Plapp, W. Dieterich, and P. Maas, Adv. Phys. 52, 523 (2003).

    Article  ADS  Google Scholar 

  45. I. K. Razumov, Yu. N. Gornostyrev, and A. Ye. Yermakov, Rev. Adv. Mater. Sci. 18, 767 (2008).

    Google Scholar 

  46. J. Christian, Theory of Transformations in Metals and Alloys (Pergamon, Oxford, 1975; Mir, Moscow, 1978).

  47. S. M. Allen and J. W. Cahn, J. Phys. 38, 7 (1977).

    Google Scholar 

  48. D. McLean, Grain Boundaries in Metals (Clarendon, Oxford, 1957; Metallurgizdat, Moscow, 1960).

  49. I. K. Razumov, Russ. J. Phys. Chem. A 88, 494 (2014).

    Article  Google Scholar 

  50. G. Gottstein, D. A. Molodov, and L. S. Shvindlerman, Interface Sci. 6, 7 (1998).

    Article  Google Scholar 

  51. D. S. Gianola, S. van Petegem, M. Legros, S. Brandstetter, H. van Swygenhoven, and K. J. Hemker, Acta Mater. 54, 2253 (2006).

    Article  Google Scholar 

  52. V. T. Rakin and N. N. Buinov, Fiz. Met. Metalloved. 11, 59 (1961).

    Google Scholar 

  53. Yu. Ivanisenko, W. Lojkowski, R. Z. Valiev, and H.‑J. Fecht, Acta Mater. 51, 5555 (2003).

    Article  Google Scholar 

  54. V. A. Barinov, G. A. Dorofeev, L. V. Ovechkin, E. P. Elsukov, and A. E. Ermakov, Phys. Status Solidi A 123, 527 (1991).

    Article  ADS  Google Scholar 

  55. A. Ye. Yermakov, Mater. Sci. Forum 179–181, 455 (1995).

    Article  Google Scholar 

  56. E. I. Teitel’, L. S. Metlov, D. V. Gunderov, and A. V. Korznikov, Phys. Met. Metallogr. 113, 1162 (2012).

    Article  ADS  Google Scholar 

  57. I. K. Razumov, Yu. N. Gornostyrev, and A. Ye. Yermakov, Phys. Met. Metallogr. 119 (12), 1133 (2018).

  58. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Wiley, Chichester, 1968).

  59. Diffusion in Solids Metals and Alloys, Landolt-Börnstein New Series (Springer, Berlin, 1990), Vol. III/26.

  60. T. Ungar, E. Schafler, P. Hanak, S. Bernstorff, and M. Zehetbauer, Mater. Sci. Eng. A 462, 398 (2007).

    Article  Google Scholar 

  61. V. V. Popov and A. V. Sergeev, Phys. Met. Metallogr. 118, 1091 (2017).

    Article  ADS  Google Scholar 

  62. B. Gwalani, T. Alam, C. Miller, T. Rojhirunsakool, Y. S. Kim, S. S. Kim, M. J. Kaufman, Yang Ren, and R. Banerjee, Acta Mater. 115, 372 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed within the state task on the subjects “Magnet” (project no. N AAAA-A18-118020290129-5) and “Structure” (project no. N AAAA-A18-118020190116-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Razumov.

Additional information

Translated by E. Glushachenkova

APPENDIX

APPENDIX

1.1 MODEL PARAMETRIZATION

In the presented calculation, the size of a grain is characterized by the ratio L/d and attains 30–200 nm (the characteristic width of a defect d was taken equal to 1 nm). The disturbance shape function near a defect was taken in the form

$$\Omega ({\mathbf{r}} - {{{\mathbf{r}}}_{{{\text{def}}}}}) = {{\left( {1 + {{{\left[ {\frac{2}{d}({\mathbf{r}} - {{{\mathbf{r}}}_{{{\text{def}}}}})} \right]}}^{{12}}}} \right)}^{{ - 1}}}.$$
((A.1))

In the case of switching in the energy of dissolution in the phases depending on the concentration (see Eq. (14)), we used the smoothened Heaviside function

$$h = {{\left( {1 + \exp \left( { - \frac{{c({\mathbf{r}}) - 0.5}}{{0.02}}} \right)} \right)}^{{ - 1}}}.$$
((A.2))

The temperature was selected from the range of 500–700 K, at which the typical values of DGB are 10‒13–10–19 m2/s [59]. As follows from the formula \({{{v}}_{{{\text{def}}}}}\) = VdefL/Ddef, the range considered in the calculations for the velocities of defects Vdef is 10–5–10–14 m/s, and the characteristic time of processes are estimated by the formula τ = Ddef/L2t with a spread of values of 10–4–105 s. In experiments, the abnormal transformations under SPD are usually completed for several seconds and, in principle, agree with this estimate. It is also worth noting that the generation of nonequilibrium vacancies under SPD [60] may increase the diffusion coefficient Ddef (and, correspondingly, the characteristic rates of processes) by 10 orders of magnitude. Moreover, the grain boundary diffusion coefficient on nonequilibrium grain boundaries formed under SPD may grow by 3–5 orders of magnitude in comparison with ordinary conditions as a result of distortion in the lattice within the broad near-boundary area [61].

The rate of ordering processes in the theoretical models [44, 45] is determined by the time of a single atomic jump, which is much shorter than the characteristic diffusion times, whence it follows that κ0L2 \( \gg \) 1. In experiments, the incubation period of ordering was observed [11, 62], probably due to the need for the implementation of long-range ordering and, in certain cases, crystal lattice rearrangement decelerating the development of this transformation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumov, I.K., Gornostyrev, Y.N. & Ermakov, A.E. Nonequilibrium Diffusional Phase Transformations in Alloys Induced by Migration of Grain Boundaries and Dislocations. Phys. Solid State 61, 214–224 (2019). https://doi.org/10.1134/S1063783419020215

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419020215

Navigation