Skip to main content
Log in

Template Synthesis, Structure, and Magnetic Properties of Layered Nanowires

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Nanowires (NWs) consisting of Ni/Cu and Co/Cu alternating layers with a diameter of 100 nm and layer thicknesses varying between 10 and 500 nm are prepared by template synthesis in pores of polymer track-etched membranes. Bath compositions and different regimes for pulsed electrodeposition of NWs are explored. A procedure for electrodeposition of NWs using pulses of equal charge is developed. By diminishing the amount of charge per pulse, initially we manage to lower the layer thickness to 10–15 nm, but further diminishing of charge in pulses leads to the blending of elemental composition of adjacent layers and/or formation of rod–shell nanostructures within the NWs. The coercive force (15–30 mT) and residual magnetization of our layered NWs are determined from magnetization measurements. For NWs with a layer thickness of 50–100 nm, the magnetization curves recorded in the out-of-plane and in-plane geometries are similar in shape and have similar parameters. For NWs with thicker layers (250 and 500 nm), magnetization curves are markedly different due to magnetic anisotropy (an easy magnetization axis emerges longitudinally to NWs) and interference between neighboring NWs. Magnetic force microscopy of isolated NWs identifies that the NWs comprise magnetic regions extending over ~100–150 nm. The NW can be partially remagnetized by applying an external magnetic field (+16 mT) longitudinally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. C. R. Martin, Science (Washington, DC, U. S.) 266, 1961 (1994).

    Article  ADS  Google Scholar 

  2. S. K. Chakarvarti and J. Vetter, Nucl. Instrum. Methods Phys. Res. 62, 109 (1991).

    Article  ADS  Google Scholar 

  3. J. Vetter and R. Spohr, Nucl. Instrum. Methods Phys. Res. 79, 691 (1993).

    Article  ADS  Google Scholar 

  4. T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, Science (Washington, DC, U. S.) 261, 1316 (1993).

    Article  ADS  Google Scholar 

  5. K. V. Frolov, D. L. Zagorskii, I. S. Lyubutin, M. A. Chuev, I. V. Perunov, S. A. Bedin, A. A. Lomov, V. V. Artemov, and S. N. Sul’yanov, JETP Lett. 105, 319 (2017).

    Article  ADS  Google Scholar 

  6. D. L. Zagorskii, K. V. Frolov, S. A. Bedin, I. V. Perunov, M. A. Chuev, A. A. Lomov, and I. M. Doludenko, Phys. Solid State 60, 2115 (2018).

    Article  ADS  Google Scholar 

  7. N. Lupu, Electrodeposited Nanowires and Their Applications (InTech, Rijeka, Croatia, 2010).

    Book  Google Scholar 

  8. Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications, Ed. by M. Vázquez (Woodhead, Elsevier, 2015).

  9. A. A. Davydov and V. M. Volgin, Russ. J. Electrochem. 52, 806 (2016).

    Article  Google Scholar 

  10. L. Piraux, J. M. George, J. F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, and A. Fert, Appl. Phys. Lett. 65, 2484 (1994).

    Article  ADS  Google Scholar 

  11. A. Blondel, J. Meier, B. Doudin, J-Ph. Ansermet, K. Attenborough, P. Evans, R. Hart, G. Nabiyouni, and W. Schwarzacher, J. Magn. Magn. Mater. 148, 317 (1995).

    Article  ADS  Google Scholar 

  12. K. Liu, K. Nagodawithana, P. C. Searson, and C. L. Chien, Phys. Rev. 51, 73 (1995).

    Google Scholar 

  13. L. Wang, K. Yu. Zhang, A. Metrot, P. Bonhomme, and M. Troyon, Thin Solid Films 288, 86 (1996).

    Article  ADS  Google Scholar 

  14. A. Blondel, B. Doudin, and J. P. Ansermet, J. Magn. Magn. Mater. 165, 34 (1997).

    Article  ADS  Google Scholar 

  15. Yu. P. Ivanov, A. Chuvilin, L. G. Vivas, J. Kosel, O. Chubukalo-Fesenko, and M. Vazques, Nat. Sci. Rep. 6, 23844 (2016).

    Article  ADS  Google Scholar 

  16. Yu. P. Ivanov, A. Chuvilin, S. Lopatin, H. Mohammed, and J. Kosel, ACS Appl. Mater. Interfaces 9, 16741 (2017).

    Article  Google Scholar 

  17. D. Magnin, V. Callegari, M. Matefi-Tempfli, K. Glinel, A. M. Jonas, and S. Demoustier-Champagne, Biomacromolecules 9, 2517 (2008).

    Article  Google Scholar 

  18. D. K. Nurgaliev and P. G. Yasonov, RF Patent No. 81805, Byull. FIPS No. 9 (2009).

  19. D. A. Bizyaev, A. A. Bukharaev, R. I. Khaibullin, N. M. Lyadov, D. L. Zagorskii, S. A. Bedin, and I. M. Doludenko, Russ. Microelectron. 47, 187 (2018).

    Article  Google Scholar 

  20. A. A. Bukharaev, N. V. Berdunov, D. V. Ovchinnikov, and K. M. Salikhov, Russ. Microelectron. 26, 137 (1997).

    Google Scholar 

  21. P. Markiewicz, S. R. Cohen, A. Efimov, D. V. Ovichinnikov, and A. A. Bukharaev, Probe Microsc. 1, 355 (1999).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to P.Yu. Apel (the Joint Institute for Nuclear Research, Dubna) for providing us with samples, S.A. Bedin (Moscow Pedagogical State University and the Crystallography Institute, Russian Academy of S-ciences) for assistance with electrodeposition, and S.A. Khechumyan (Faculty of Physics, Moscow State University and the Crystallography Institute, Russian Academy of Sciences) for X-ray diffraction analyses.

Funding

Syntheses and microscopic investigations were funded by the Ministry for Education and Science within a state assignment by the Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences. Magnetic measurements and magnetic force microscopy imaging were funded within state assignment АААА-А18-118041760011-2 by Zavoisky Physical-Technical Institute (KPhTI), Federal Research Center “Kazan Scientific Center,” Russian Academy of Sciences. Part of the work was performed using the equipment of the Center for Collective Use of the Crystallography Institute, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Zagorskii.

Ethics declarations

We have no conflicts of interest to declare.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagorskii, D.L., Doludenko, I.M., Cherkasov, D.A. et al. Template Synthesis, Structure, and Magnetic Properties of Layered Nanowires. Phys. Solid State 61, 1634–1645 (2019). https://doi.org/10.1134/S1063783419090282

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419090282

Keywords:

Navigation