Skip to main content
Log in

Morphological stability of a crystal with respect to arbitrary boundary perturbations

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The morphological stability of a growing round crystal with respect to harmonic perturbations of arbitrary amplitudes has been studied. The critical crystal size with respect to stable growth decreases with increasing amplitude of perturbations and tends to a value that was previously analytically determined proceeding from the principle of maximum entropy production. This result offers new important evidence for the validity of a hypothesis concerning the possibility of using entropy production instead of a thermodynamic potential in the analysis of nonequilibrium phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Haken, Synergetics (Springer, New York, 1978; Mir, Moscow, 1980).

    MATH  Google Scholar 

  2. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Willey-Interscience, New York, 1971).

    MATH  Google Scholar 

  3. E. Ben-Jacob and P. Garik, Nature 343, 523 (1990).

    Article  ADS  Google Scholar 

  4. S. Akamatsu, G. Faivre, and T. Ihle, Phys. Rev. E 51, 4751 (1995).

    Article  ADS  Google Scholar 

  5. A. A. Shibkov, Yu. Golovin, M. A. Zheltov, and A. A. Vlasov, Kristallografiya 46, 549 (2001) [Crystallogr. Rep. 46, 496 (2001)].

    Google Scholar 

  6. J. S. Kirkaldy, Metall. Trans. A 16, 1781 (1985).

    Google Scholar 

  7. L. M. Martyushev and V. D. Seleznev, Dokl. Akad. Nauk 371, 466 (2000) [Dokl. Phys. 45, 129 (2000)].

    MATH  Google Scholar 

  8. L. M. Martyushev, V. D. Seleznev, and I. E. Kuznetsova, Zh. Éksp. Teor. Fiz. 118, 149 (2000) [JETP 91, 132 (2000)].

    Google Scholar 

  9. H. Ziegler, in Progress in Solid Mechanics, Ed. by I. N. Sneddon and R. Hill (North-Holland, Amsterdam, 1963; Mir, Moscow, 1966), Vol. 4, Chap. 2.

    Google Scholar 

  10. H. Ziegler, An Introduction to Thermomechanics (North-Holland, Amsterdam, 1983).

    MATH  Google Scholar 

  11. M. Kohler, Z. Physik 124, 772 (1948).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. J. M. Ziman, Can. J. Phys. 34, 1256 (1956).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. L. M. Martyushev and E. M. Sal’nikova, Evolution of Ecosystems and Modern Thermodynamics (IKI, Moscow, 2004) [in Russian].

    Google Scholar 

  14. Mu Wang and Nai-ben Ming, Phys. Rev. Lett. 71, 113 (1993).

    Article  ADS  Google Scholar 

  15. L. M. Martyushev and E. G. Axelrod, Pis’ma Zh. Éksp. Teor. Fiz. 78, 948 (2003) [JETP Lett. 78, 476 (2003)].

    Google Scholar 

  16. A. Hill, Nature 348, 426 (1990).

    Article  ADS  Google Scholar 

  17. L. M. Martyushev and E. M. Salnikova, J. Phys.: Condens. Matter 15, 1137 (2003).

    Article  ADS  Google Scholar 

  18. L. M. Martyushev, I. E. Kuznetsova, and V. D. Seleznev, Zh. Éksp. Teor. Fiz. 121, 363 (2002) [JETP 94, 307 (2002)].

    Google Scholar 

  19. S. R. Coriell and R. L. Parker, J. Appl. Phys. 36, 632 (1965).

    Article  ADS  Google Scholar 

  20. P. P. Debroy and R. F. Sekerka, Phys. Rev. E 53, 6244 (1996).

    Article  ADS  Google Scholar 

  21. L. M. Martyushev, E. M. Sal’nikova, and E. A. Chervontseva, Zh. Éksp. Teor. Fiz. 125, 1128 (2004) [JETP 98, 986 (2004)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.M. Martyushev, S.V. Serebrennikov, 2006, published in Pis’ma v Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 32, No. 14, pp. 33–39.

This author has also appeared under the alternate spelling L.M. Martiouchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martyushev, L.M., Serebrennikov, S.V. Morphological stability of a crystal with respect to arbitrary boundary perturbations. Tech. Phys. Lett. 32, 614–617 (2006). https://doi.org/10.1134/S1063785006070194

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785006070194

PACS numbers

Navigation