Skip to main content
Log in

Heterostructures for quantum-cascade lasers of the wavelength range of 7–8 μm

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

It is shown that molecular-beam-epitaxy technology can be used to fabricate heterostructures for quantum-cascade lasers of the wavelength range of 7–8 μm with an active region comprising 50 cascades based on a heterojunction of In0.53Ga0.47As/Al0.48In0.52As solid solutions. The optical emission is obtained using a quantum-cascade design operating on the principle of two-phonon resonance scattering. The properties of heterostructures were studied by the methods of X-ray diffraction and transmission electron microscopy, which showed their high quality with respect to the identical compositions and thicknesses of all 50 cascades. Stripe-geometry lasers made of these heterostructures exhibited lasing with a threshold current density below 1.6 kA/cm2 at a temperature of 78 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Yu, S. Slivken, and M. Razeghi, Semicond. Sci. Technol. 25, 125015 (2010).

    Article  ADS  Google Scholar 

  2. M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, et al., Proc. Nat. Acad. Sci. USA 103, 19630 (2006).

    Article  ADS  Google Scholar 

  3. S. R. Darvish, W. Zhang, A. Evans, et al., Appl. Phys. Lett. 89, 251119 (2006).

    Article  ADS  Google Scholar 

  4. G. Xu, V. Moreau, Y. Chassagneux, et al., Appl. Phys. Lett. 94, 221101 (2009).

    Article  ADS  Google Scholar 

  5. R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, Opt. Express 19, 17203 (2011).

    Article  ADS  Google Scholar 

  6. C. Gmachl, A. Tredicucci, F. Capasso, et al., Appl. Phys. Lett. 72, 3130 (1998).

    Article  ADS  Google Scholar 

  7. R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, et al., Opt. Eng. 49, 111109 (2010).

    Article  ADS  Google Scholar 

  8. M. Troccoli, A. Lyakh, J. Fan, et al., Opt. Mater. Express 3, 1546 (2013).

    Article  Google Scholar 

  9. M. Troccoli, IEEE J. Sel. Top. Quant. Electron. 21, 61 (2015).

    Article  Google Scholar 

  10. C. Gmachl, F. Capasso, A. Tredicucci, et al., IEEE J. Sel. Top. Quant. Electron. 5, 808 (1999).

    Article  Google Scholar 

  11. O. Fedosenko, M. Chashnikova, S. Machulik, et al., J. Cryst. Growth 323, 484 (2011).

    Article  ADS  Google Scholar 

  12. A. V. Babichev, A. Bousseksou, N. A. Pikhtin, I. S. Tarasov, E. V. Nikitina, A. N. Sofronov, D. A. Firsov, L. E. Vorobjev, I. I. Novikov, L. Ya. Karachinsky, and A. Yu. Egorov, Semiconductors 50, 1299 (2016).

    Article  ADS  Google Scholar 

  13. M. Garcia, F. J. Vermersch, X. Marcadet, et al., Proc. SPIE 6133, 613304 (2006).

    Article  Google Scholar 

  14. A. A. Lazarenko, E. V. Nikitina, E. V. Pirogov, M. S. Sobolev and A. Yu. Egorov, Tech. Phys. Lett. 42, 284 (2016).

    Article  ADS  Google Scholar 

  15. A. Y. Egorov, P. N. Brunkov, E. V. Nikitina, E. V. Pirogov, M. S. Sobolev, A. A. Lazarenko, M. V. Baidakova, D. A. Kirilenko, and S. G. Konnikov, Semiconductors 48, 1600 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Egorov.

Additional information

Original Russian Text © A.V. Babichev, A.G. Gladyshev, A.V. Filimonov, V.N. Nevedomskii, A.S. Kurochkin, E.S. Kolodeznyi, G.S. Sokolovskii, V.E. Bugrov, L.Ya. Karachinsky, I.I. Novikov, A. Bousseksou, A.Yu. Egorov, 2017, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 43, No. 14, pp. 64–71.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babichev, A.V., Gladyshev, A.G., Filimonov, A.V. et al. Heterostructures for quantum-cascade lasers of the wavelength range of 7–8 μm. Tech. Phys. Lett. 43, 666–669 (2017). https://doi.org/10.1134/S1063785017070173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785017070173

Navigation