Skip to main content
Log in

Organic carbon in long-fallow lands of Russia

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The dynamics of organic carbon upon natural overgrowing of abandoned croplands transferred into the category of long-fallow lands is analyzed for the period from 1990 to 2002. The total area of long-fallow lands in Russia reaches 21.6 million ha. The dynamics of organic carbon in fallowed soils has been simulated using the ROTHC model. For this purpose, the territory of Russia was subdivided into 40 regions, for which the major soil characteristics, climatic data, and the input of organic matter into the soils have been averaged. The results of calculations show that the long-fallow lands of Russia have lost 9.9 million tons Corg (36.4 million tons CO2) in 13 years with the average loss rate of 0.46 t C/ha. It is expected that the accumulation of organic carbon will take place in the fallowed soils in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Bazilevich, Biological Productivity of Ecosystems in the Northern Eurasia (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  2. N. I. Bolotina, “Humus and Nitrogen Reserves in the Main Soil Types of the Soviet Union,” in Agrochemical Characterization of Soils of the Soviet Union (1976), pp.187-202.

  3. Great Soviet Atlas of the World (Moscow, 1937), Vol. 1, Maps 122–123 [in Russian].

  4. I. F. Golubev, Soil Science with Basic Geobotanics (Kolos, Moscow, 1970) [in Russian].

    Google Scholar 

  5. S. D. Gusev, Vegetation and Dynamics of the Overgrowing of Long-Fallow Lands in the Verkhnii Ural Region (Ural’skii Kraeved, Nadezhdinsk, 1932) [in Russian].

    Google Scholar 

  6. Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC-UNEP-IUC, 1998).

  7. M. M. Kononova, “Organic Matter and Soil Fertility,” Pochvovedenie, No. 8, 6-20 (1984).

  8. A. A. Kutuzova, D. M. Teberdiev, and A. P. Raev, “Creation of Meadow Hayfields on Laylands,” Dostizheniya Nauki i Tekhniki APK, No. 11, 16-18 (2002).

  9. S. I. Lebedev, Plant Physiology (Kolos, Moscow, 1982) [in Russian].

    Google Scholar 

  10. F. I. Levin, “Content of Plant Remains in Field Crops and Its Determination from the Target Crop Yield,” Agrokhimiya, No. 8, 36-42 (1977).

  11. T. Sh. Nersesyan and E. F. Shur-Bagdasaryan, “Biological Productivity of Natural Phytocenoses,” Biol. Zh. Armenii 42 (7), 684–687 (1989).

    Google Scholar 

  12. D. S. Orlov and O. M. Biryukova, “Organic Carbon Reserves in the Soils of Russian Federation,” Pochvovedenie, No. 1, 21-32 (1995).

  13. D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter in the Soils of Russian Federation (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  14. Distribution of Agricultural Lands in the Russian Federation by Soil Groups (Minsel’khoz RSFSR, Moscow, 1980) [in Russian].

  15. A. A. Romanovskaya, M. L. Gitarskii, R. T. Karaban’, and I. M. Nazarov, “Assessment of Nitrous Oxide Emission from Agricultural Plant Mortmass Unused in the Agrarian Sector of the Country,” in Problems of Ecological Monitoring and Simulation of Ecosystems (Gidrometeoizdat, St. Petersburg, 2002), Vol. 18, pp. 276–286 [in Russian].

    Google Scholar 

  16. Agriculture in Russia: Statistical Digest (Goskomstat Rossii, Moscow, 1995) [in Russian].

  17. Agriculture in Russia: Statistical Digest (Goskomstat Rossii, Moscow, 2002), p. 448 [in Russian].

  18. V. V. Snakin, “Redox Potential of Soils and Productive Parameters of Grass Ecosystems,” Izv. Ross. Akad. Nauk, Ser. Biol., No. 2, 295-300 (1992).

  19. V. A. Snytko, L. G. Nefed’eva, and S. S. Dubynina, “Grass Biogeocenoses of the Nazarovskaya Hollow and the Effect of Technogenesis on Their Productivity” in Productivity of Haylands and Pastures, Ed. by A. A. Titlyanova (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  20. V. A. Snytko, L. G. Nefed’eva, and S. S. Dubynina, “Tendencies in the Restoration of Disturbed Lands,” Geogr. Prir. Resur., No. 1, 56-61 (1988).

  21. A. V. Sokolov and N. N. Rozov, “Soil-Agrochemical Zoning of the Soviet Union,” in Agrochemical Characterization of Soils of the Soviet Union (1976), Vol. 15, pp.5–16.

    Google Scholar 

  22. Reference Book on the Climate of the USSR (Gidrometeoizdat, Leningrad, 1965) [in Russian].

  23. A. A. Titlyanova, “Primary Production and Humus Reserves in Ecosystems,” in Problems of Soil Science in Siberia (Novosibirsk, 1990), pp. 47-53 [in Russian].

  24. V. V. Turganaev and T. A. Pestereva, “Dynamics of Vegetation on Abandoned Arable Lands in the Southern Regions of the Vyatka-Kama Basin (Udmurtiya),” Bot. Zh., No. 6, 1265-1272 (1976).

  25. F. S. Chapin and E. Matthews, “Boreal Carbon Pools: Approaches and Constrains in Global Extrapolations,” in Carbon Cycling in Boreal Forests and Sub-Arctic Ecosystems, Ed. by T.S. Vinson and T.P. Kolchugina (EPA, Corvallis, OR, 1994), pp. 9–20.

    Google Scholar 

  26. O. G. Chertov and A. S. Komarov, “SOMM: A Model of Soil Organic Matter and Nitrogen Dynamics in Terrestrial Ecosystems,” in Evaluation of Soil Organic Matter Models, Ed. by D.S. Powlson, P. Smith, and J. U. Smith, NATO ASI Series (Springel, Berlin, 1996), Vol. 138, pp.231–236.

    Google Scholar 

  27. K. Coleman and D. S. Jenkinson, “RothC-26.3, a Model for the Turnover of Carbon in Soil,” in Evaluation of Soil Organic Matter Models, Ed. by D. S. Powlson, P. Smith, and J. U. Smith, NATO ASI Series (Springel, Berlin, 1996), Vol. 138, pp. 237–246.

    Google Scholar 

  28. 961-1990 Global Climate Normals (Hong-Kong Observatory, WMO, 2003); http://www.hko.gov.hk/wxinfo/cli-mat/world/eng/europe/russia/russia-e.htm.

  29. R. A. Houghton, “The Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use 1850-1990,” Tellus 51B, 298–313 (1999).

    Google Scholar 

  30. R. A. Houghton, “Revised Estimates of the Annual Net Flux of Carbon to the Atmosphere from Changes in Land Use and Land Management 1850-2000,” Tellus 55B, 378–390 (2003).

    Google Scholar 

  31. Land Use, Land Use Change, and Forestry: A Special Report of the IPCC(Cambridge Univ. Press, Cambridge, 2000).

  32. D. S. Jenkinson, “The Turnover of Organic Carbon and Nitrogen in Soil,” Phil. Trans. Roy. Soc. 329, 361–368 (1990).

    Google Scholar 

  33. J. Liski, A. Pussinen, K. Pingoud, et al., “Which Rotation Length Is Favorable to Mitigation of Climate Change?,” Can. J. For. Res., No. 31, 2004-2013 (2001).

    Google Scholar 

  34. O. M. Masera, J. F. Garza-Caligaris, M. Kanninen, et al., “Modeling Carbon Sequestration in Afforestation, Agroforestry, and Forest Management Projects: the CO2FIX V.2 Approach,” Ecol. Model., No. 194, 177-199 (2003).

  35. W. B. McGill, “Review and Classification of Ten Soil Organic Matter (SOM) Models,” in Evaluation of Soil Organic Matter Models, Ed. by D. S. Powlson, P. Smith, and J. U. Smith, NATO ASI Series (Springel, Berlin, 1996), Vol. 138, pp. 111–132.

    Google Scholar 

  36. S. Nilsson, A. Shvidenko, V. Stolbovoi, et al., Full Carbon Account for Russia: Interim Report IR-00-121 (IIASA, Austria, 2000), p. 181; http://www.iiasa.ac.at/Publica-tions/Documents/IR-00-121.pdf.

    Google Scholar 

  37. W. J. Parton, “The CENTURY Model,” in Evaluation of Soil Organic Matter Models, Ed. by D.S. Powlson, P. Smith, and J.U. Smith, NATO ASI Series (Springel, Berlin, 1996), Vol. 138, pp. 283–291.

    Google Scholar 

  38. W. M. Post, A. W. King, and S. D. Wullschleger, “Soil Organic Matter Models and Global Estimates of Soil Organic Carbon,” in Evaluation of Soil Organic Matter Models, Ed. by D. S. Powlson, P. Smith, and J. U. Smith, NATO ASI Series (Springel, Berlin, 1996), Vol. 138, pp.201–222.

    Google Scholar 

  39. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC-OECD-IEA, Paris, 1997).

  40. V. A. Rozhkov, V. B. Wagner, B. M. Kogut, et al., Soil Carbon Estimates and Soil Carbon Map for Russia: WP-96-60 (IIASA, Austria, 1996), p. 44.

    Google Scholar 

  41. C. W. Thornthwaite, “An Approach toward a Rational Classification of Climate,” Geogr. Rev., No. 38, 55-94 (1948).

    Google Scholar 

  42. UN Framework Convention on Climate Change (UNFCCC-UNEP-IUC, 1998), p. 29.

  43. J. A. Van Veen and E. A. Paul, “Organic Carbon Dynamics in Grassland Soils: Background Information and Computer Simulation,” Can. J. Soil Sci. 61 (2), 185–201 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The Editorial Board publishes this paper with a comment that it does not contain experimental data confirming the loss of organic carbon from abandoned plowlands in comparison with cultivated lands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanovskaya, A.A. Organic carbon in long-fallow lands of Russia. Eurasian Soil Sc. 39, 44–52 (2006). https://doi.org/10.1134/S1064229306010066

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229306010066

Keywords

Navigation