Skip to main content
Log in

Soil-like bodies of autochemolithotrophic ecosystems in the caves of the Kugitangtau Ridge, eastern Turkmenistan

  • Genesis and Geography of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Ecosystems, in which the role of primary producers is played not by the photosynthetically active plants, but by the autochemolithotrophic microorganisms utilizing the chemical energy instead of the solar energy, have been described in the caves of eastern Turkmenistan. The zones of contact and interaction between the microorganisms and the mineral substrate perform the regulative, structuring, and bioaccumulative functions of surface soils. These zones have a vertically anisotropic profile forming in situ. Their functional and structural specificity makes it possible to consider them as bio-abiotic natural soil-like bodies and to apply the methods of pedology for their study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Arinushkina, Manual on the Chemical Analysis of Soils (Moscow, 1970) [in Russian].

  2. T. K. Berkeliev, “The Genesis of Fluorite in the Caves of the Kugitangtau Ridge,” Izv. Akad. Nauk Turkmen., No. 2, 140–143 (1995).

    Google Scholar 

  3. G. I. Bushinskii, “Advances in Studying the Genesis of Bauxites in the Recent Decade (1955–1965),” in Genesis of Bauxites (Nauka, Moscow, 1966), pp. 5–30 [in Russian].

    Google Scholar 

  4. Yu. N. Vodyanitskii, The Formation of Iron Oxides in Soil (Pochv. Inst. im. W Dokuchaeva Ross. Akad. S-kh. Nauk, Moscow, 1992) [in Russian].

    Google Scholar 

  5. L. A. Vorob’eva, Theory and Methods of the Chemical Analysis of Soils (Izd. Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  6. A. D. Voronin, Basics of Soil Physics (Izd. Mosk. Gos. Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  7. E. A. Dmitriey, “Soils and Soil-like Bodies,” Pochvovedenie, No. 3, 310–319 (1996) [Eur. Soil Sci. 29 (3), 275-282(1996)].

    Google Scholar 

  8. Zh. V. Dombrovskaya, “On the Genesis of Allophane-Gibbsitic Mineralization in the Rocks of the Baikal Series,” Kora Vyvetrivaniya, No. 16, 89–106 (1978).

    Google Scholar 

  9. S. V. Zonn and A. P. Travleev, Aluminum: Role in Soil Formation and Impact on Plants (Izd. Dnepropetrovsk. Gos. Univ., Dnepropetrovsk, 1992) [in Russian].

    Google Scholar 

  10. A. B. Klimchuk, V. M. Nasedkin, and K. I. Cunningham, “Secondary Cave Formations of the Aerosol Genesis,” Svet, No. 3(9), 12–21 (1993).

    Google Scholar 

  11. Yu. I. Korchagina and O. P. Chetverikova, Techniques for Studying Organic Matter Dispersed in Sedimentary Rocks (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  12. S. I. Kuznetsov and G. A. Dubinina, Methods for Studying Aquatic Microoranisms (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  13. V. I. Kucheryavykh and M. A. Abduzhabaroy, “Kap-Kotan-2: The Largest Cave in Central Asia,” in Some Aspects of the Physical Geography of Southwestern Uzbekistan (Samarkand Univ., Samarkand, 1982), pp. 29–30 [in Russian].

    Google Scholar 

  14. E. I. Kutyrev, B. M. Mikhailov, and Yu. S. Lyakheitskii, Karstic Deposits (Nedra, Leningrad, 1989) [in Russian].

    Google Scholar 

  15. Methods of Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Izd. Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  16. V. I. Mikheev, X-Ray Data for Mineral Determination (Gosgeoltekhizdat, Moscow, 1957) [in Russian].

    Google Scholar 

  17. V. N. Razumova and A. G. Chernyakhovskii, “Ancient Weathering Mantle on the Ort-Ilek Interfluve and the History of Its Development,” Tr. Geol. Inst. Akad. Nauk SSSR, No. 77 (1963).

  18. V. N. Razumova, “Gibbsitic Weathering Crusts of Mafic Rocks,” in The Genesis of Bauxites (Nauka, Moscow, 1966), pp. 91–101 [in Russian].

    Google Scholar 

  19. I. A. Sokolov, Theoretical Problems of Pedology (Novosibirsk, 1993) [in Russian].

  20. V. O. Targulian, “Exogenesis and Pedogenesis: Expansion of the Theoretical Basis of Pedology,” Vest. Mosk. Univ., Ser. 17: Pochvoved. No. 1, 33–43 (1983).

    Google Scholar 

  21. A. G. Chernyakhovskii, “Vertical Zoning of the Quaternary Gibbsitic Weathering Crust,” Dokl. Akad. Nauk SSSR 198(2), 415–418 (1971).

    Google Scholar 

  22. R. Benner and S. Ziegler, “Do photochemical Transformations of Dissolved Organic Matter Produce Biorefractory as well as Bioreactive Substrates?” in Microbial Biosystems: New Frontiers, Proc. 8th Int. Symp. on Microbial Ecology, Ed. by C. R. Bell, M. Bryrinsky, and P. Johnson-Green (Atlantic Canada Soc. Microb. Ecol., Halifax, 2000), pp. 181–192.

    Google Scholar 

  23. T. M. Bhatti, J. M. Bigham, L. Carlson, and O. H. Tuovinen, “Mineral Products of Pyrrhotite Oxidation by Thiobacillus ferrooxidans,” Appl. Environ. Microbiol. 59(6), 1984–1990(1993).

    Google Scholar 

  24. P. W. Blowes, T. A. Al, L. Lortie, et al., “Microbiological, Chemical, Mineralogical Characterization of the Kidd Greek Main-Tailing Impoundment, Timmins Area, Ontario,” Geomicrobiol. J., No. 13, 13–31 (1995).

    Article  Google Scholar 

  25. S. Botrell, S. Crowley, and C. Self, “Invasion of a Karst Aquifer by Hydrothermal Fluids: Evidence from Stable Isotopic Composition of Cave Mineralization,” Geofluids, No. 1, 103–121 (2001).

    Article  Google Scholar 

  26. K. I. Cunningham, D. E. Northup, W. G. Pollastro, et al., “Bacteria, Fungi and Biokarst in Lechugilla Cave, Carlsbad Caverns National Park, New Mexico,” Environ. Geol., No. 25, 2–8 (1995).

    Article  Google Scholar 

  27. D. Fortin and T. J. Beveridg, “Microbial Sulfate Reduction within Mine Tailings: Formation of Diagenetic Fe-Sulfides,” Geomicrobiol. J. 14, 1–21 (1997).

    Article  Google Scholar 

  28. A. M. Gounot, “La Microflore des Limons Argileux Souterrains: Sone Activite Productrice dan la Biocenose Cavernicole,” Ann. Speleol. 26, 23–146 (1967).

    Google Scholar 

  29. M. V. Maltsev, V. V. Korshunov, and A. A. Semikolennykh, “Cave Chemolithotrophic Soils,” in Proc. 12th Cong. of Speleology (La-Chaux-de-Fonds. Switzerland, 1997), Vol. 1, pp. 29–32.

    Google Scholar 

  30. V. A. Maltsev and C. A. Self, “Cupp-Coutan Cave System. Turkmenistan. Central Asia,” Proc. Bristol Speleol. Soc., 19(2), 117–149 (1992).

    Google Scholar 

  31. G. Pedro and J. C. Lubin, “Sur L’Evolution des Gels Alumino-Silicaques en Milieu Lesaive. Influence de la Nature des Agents d’Alteration sur l’Edification de Gibbsite on Bohemite au Sein des Produits Eluviaux,” C. R. Acad. Sci. 226, 551–444 (1970).

    Google Scholar 

  32. S. M. Sarbu, B. K. Kimkle, L. Vlasceanu, et al., “Microbial Characterization of a Sulfide-Rich Groundwater Ecosystem,” Geomicrobiol. J., No. 12, 175–182 (1994).

    Article  Google Scholar 

  33. S. M. Sarbu and C. Lascu, “Condensation Corrosion in Movil Cave, Romania,” J. of Cave and Karst Studies. 59(3), 99–102 (1997).

    Google Scholar 

  34. H. P. Toran and R. F. Harris, “Interpretation of Sulfur and Oxygen Isotopes in Biological and Abiological Sulfide Oxidation,” Geochim. Cosmochim. Acta 53, 2341–2348 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Semikolennykh, V.O. Targulian, 2010, published in Pochvovedenie, 2010, No. 6, pp. 658–672.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semikolennykh, A.A., Targulian, V.O. Soil-like bodies of autochemolithotrophic ecosystems in the caves of the Kugitangtau Ridge, eastern Turkmenistan. Eurasian Soil Sc. 43, 614–627 (2010). https://doi.org/10.1134/S1064229310060025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229310060025

Keywords

Navigation