Skip to main content
Log in

Iron hydroxides in soils: A review of publications

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Iron hydroxides are subdivided into thermodynamically unstable (ferrihydrite, feroxyhyte, and lepidocrocite) and stable (goethite) minerals. Hydroxides are formed either from Fe3+ (as ferrihydrite) or Fe2+ (as feroxyhyte and lepidocrocite). The high amount of feroxyhyte in ferromanganic concretions is proved, which points to the leading role of variable redox conditions in the synthesis of hydroxides. The structure of iron hydroxides is stabilized by inorganic elements, i.e., ferrihydrite, by silicon; feroxyhyte, by manganese; lepidocrocite, by phosphorus; and goethite, by aluminum. Ferrihydrite and feroxyhyte are formed with the participation of biota, whereas the abiotic formation of lepidocrocite and goethite is possible. The iron hydroxidogenesis is more pronounced in podzolic soils than in chernozems, and it is more pronounced in iron-manganic nodules than in the fine earth. Upon the dissolution of iron hydroxides, iron isotopes are fractioned with light-weight 54Fe atoms being dissolved more readily. Unstable hydroxides are transformed into stable (hydr)oxides, i.e., feroxyhyte is spontaneously converted to goethite, and ferrihydrite, to hematite or goethite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Abidueva and T. A. Sokolova, Clay Minerals and the Potassium Status of Steppe Soils of the Western Transbaikal Region (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2005), 100 pp. [in Russian].

    Google Scholar 

  2. T. V. Aristovskaya, Microbiology of Podzolic Soils (Nauka, Leningrad, 1965), 197 pp. [in Russian].

    Google Scholar 

  3. Yu. N. Vodyanitskii, “Iron Hydroxides in Biogenic Neoformations of Forest Soils of the Russian Plain,” Pochvovedenie, No. 12, 1440–1452 (2003) [Eur. Soil Sci. 36 (12), 1286–1297 (2003)].

  4. Yu. N. Vodyanitskii, “Solubility of Iron Oxides of Forest Soils in the Tamm Reagent,” Pochvovedenie, No. 10, 1199–1208 (1998) [Eur. Soil Sci. 31 (10), 1083–1092 (1998)].

  5. Yu. N. Vodyanitskii, Chemistry and Mineralogy of Soil Iron (Pochven. Inst. im. V.V. Dokuchaeva, Moscow, 2003), 238 pp. [in Russian].

    Google Scholar 

  6. Yu. N. Vodyanitskii, E. I. Gagarina, A. D. Gorbovskaya, and A. F. Naumenko, “Forms of Iron Compounds in Soils of Selga Landscape on the Karelian Isthmus,” Pochvovedenie, No. 4, 445–454 (1999) [Eur. Soil Sci. 32 (4), 404–412 (1999)].

  7. Yu. N. Vodyanitskii, A. I. Gorshkov, and A. V. Sivtsov, “Thermodynamically Unstable Iron Hydroxides in Soddy-Podzolic and Brown Forest Soils,” Pochvovedenie, No. 12, 1440–1447 (1996) [Eur. Soil Sci. 29 (12), 1342–1349 (1996)].

  8. Yu. N. Vodyanitskii and V. V. Dobrovol’skii, Iron Minerals and Heavy Metals in Soils (Pochv. Inst. im. V.V. Dokuchaeva, Moscow, 1998), 216 pp. [in Russian].

    Google Scholar 

  9. Yu. N. Vodyanitskii, S. N. Lesovaya, and A. V. Sivtsov, “Iron Hydroxidogenesis in Forest and Steppe Soils of the Russian Plain,” Pochvovedenie, No. 4, 465–475 (2003) [Eur. Soil Sci. 36 (4), 420–429 (2003)].

  10. Yu. N. Vodyanitskii and A. V. Sivtsov, “Formation of Ferrihydrite, Ferroxyhyte, and Vernadite in Soil,” Pochvovedenie, No. 8, 986–999 (2004) [Eur. Soil Sci. 37 (8), 863–875 (2004)].

  11. Supergene Iron Oxides in Geological Processes (Nauka, Moscow, 1975), 206 pp. [in Russian].

  12. A. K. Degtyareva, Author’s Abstract of Cand. Sci. (Biol.) Dissertation (Moscow, 1990), 20 pp. [in Russian].

  13. V. A. Drits, A. I. Gorshkov, B. A. Sakharov, et al., “Ferrihydrite and Its Phase Transformations upon Heating under Oxidative and Reducing Conditions,” Litol. Polezn. Iskopaem., No. 1, 76–84 (1995).

  14. V. S. Savenko, “On the Formation of Iron-Manganic Concretions (A Physicochemical Analysis),” Geokhimiya, No. 8, 1151–1160 (1990).

  15. F. V. Chukhrov, A. I. Gorshkov, and V. A. Drits, Supergene Manganese Oxides (Nauka, Moscow, 1989), 208 pp. [in Russian].

    Google Scholar 

  16. W. A. Adams and J. K. Kassim, “Iron Oxyhydroxides in Soils Developed from Lower Paleozoic Sedimentary Rocks in Mid-Wales and Implications for Some Pedogenetic Processes,” J. Soil Sci. 35, 117–126 (1984).

    Article  Google Scholar 

  17. A. D. Anhar, “Iron Stable Isotopes: Beyond Biosignatures,” Earth Planet. Sci. Lett. 217, 223–236 (2004).

    Article  Google Scholar 

  18. B. L. Beard and C. M. Johnson, “Fe Isotope Variations in the Modern and Ancient Earth and Other Planetary Bodies,” Rev. Mineral. Geochem. 55, 319–357 (2004).

    Article  Google Scholar 

  19. B. L. Beard, C. M. Johnson, L. Cox, et al., “Iron Isotope Biosignatures,” Science 285, 1889–1892 (1999).

    Article  Google Scholar 

  20. S. G. Benner, C. M. Hansel, B. M. Wielinga, and S. Fendorf, “Reductive Dissolution and Biomineralization of Iron Hydroxide under Flow Conditions,” Environ. Sci. Technol. 36, 1705–1711 (2002).

    Article  Google Scholar 

  21. S. L. Brantley, L. Liermann, and T. D. Bullen, “Fractionation of Fe Isotopes by Soil Microbes and Organic Acids,” Geology 29, 535–538 (2001).

    Article  Google Scholar 

  22. S. L. Brantley, L. Liermann, R. L. Guynn, et al., “Fe Isotopic Fractionation during Mineral Dissolution with and Without Bacteria,” Geochim. Cosmochim. Acta 68, 3189–3204 (2004).

    Article  Google Scholar 

  23. L. Carlson and U. Schwertmann, “Natural Occurrence of Feroxyhyte (δ′-FeOOH),” Clays Clay Minerals 28(4), 272–280 (1980).

    Article  Google Scholar 

  24. R. M. Cornell and U. Schwertmann, The iron oxidesstructure, properties, reactions, occurrence and uses, 2nd ed. VCH. Weinheim. 665 p. (2003).

    Google Scholar 

  25. H. A. Crosby, C. M. Johnson, E. E. Roden, and B. L. Beard, “Coupled Fe(II)-Fe(III) Electron and Atom Exchange as a Mechanism for Fe Isotope Fractionation during Dissimilatory Iron Oxide Reduction,” Environ. Sci. Technol. 39, 6698–6704 (2005).

    Article  Google Scholar 

  26. J. Cumplido, V. Barron, and J. Torrent, “Effects of Phosphate on the Formation of Nanophase Lepidocrocite from Fe(II) sulfate,” Clays Clay Miner. 48, 503–510 (2000).

    Article  Google Scholar 

  27. I. Diakonov, I. Khodakovsky, J. Schott, and E. Sergeeva, “Thermodynamic Properties of Iron Oxides and Hydroxides. I. Surface and Bulk Thermodynamic Properties of Goethite (-FeOOH) up to 500 K,” Eur. J. Mineral. 6, 967–983 (1994).

    Google Scholar 

  28. M. H. Ebinger and D. G. Schulze, “The Influence of pH on the Synthesis of Mixed Fe-Mn Oxide Minerals,” Clay Miner. 25, 507–518 (1990).

    Article  Google Scholar 

  29. R. A. Eggleton and R. W. Fitzpatrick, “New Data and a Revised Structural Model for Ferrihydrite,” Clays Clay Miner. 36, 111–124 (1988).

    Article  Google Scholar 

  30. M. S. Fantle and D. J. DePaolo, “Iron Isotope Fractionation during Continental Weathering,” Earth Planet. Sci. Lett. 217, 547–562 (2004).

    Article  Google Scholar 

  31. R. W. Fitzpatrick and U. Schwertmann, “Al-Substituted Goethite, an Indicator of Pedogenic and Other Weathering Environments in South Africa,” Geoderma 27, 335–347 (1982).

    Article  Google Scholar 

  32. R. W. Fitzpatrick, R. M. Taylor, U. Schwertmann, and C. W. Childs, “Occurrence and Properties of Lepidocrocite in Some Soils of New Zealand, South Africa and Australia,” Aust. J. Soil. Res. 23, 543–567 (1985).

    Article  Google Scholar 

  33. N. Galvez, V. Barron, and J. Torrent, “Effect of Phosphate on Crystallization of Hematite, Goethite, and Lepidocrocite from Ferrihydrite,” Clays Clay Miner. 47(3), 304–311 (1999).

    Article  Google Scholar 

  34. A. N. Halliday, D.-C. Lee, J. N. Christensen, et al., “Application of Multiple Collector-ICPMS to Cosmochemistry, Geochemistry, and Paleoceanography,” Geochim. Cosmochim. Acta 62, 919–940 (1998).

    Article  Google Scholar 

  35. M. G. Johnson and M. B. McBride, “Mineralogical and Chemical Characteristics of Adirondack Spodosols: Evidence for Para- and Noncrystalline Minerals,” Soil Sci. Soc. Am. J. 53(2), 482–490 (1989).

    Article  Google Scholar 

  36. C. M. Hansel, S. G. Benner, and S. Fendorf, “Competing Fe(II)-Induced Mineralization Pathways of Ferrihydrite,” Environ. Sci. Technol. 30, 1540–1552 (1996).

    Article  Google Scholar 

  37. C. M. Hansel, S. G. Benner, J. Neiss, et al., “Secondary Mineralization Pathways Induced by Dissmilatory Iron Reduction of Ferrihydrite under Advective Flow,” Geochim. Cosmochim. Acta 67, 2977–2992 (2003).

    Article  Google Scholar 

  38. C. M. Johnson, B. L. Beard, E. E. Roden, et al., “Isotopic Constraints on Biogeochemical Cycling of Fe,” Rev. Mineral. Geochem. 55, 359–408 (2004).

    Article  Google Scholar 

  39. Z. Karim and A. C. D. Hewman, “The Possible Effect of Soluble Silicon on the Lepidocrocite Content of Gley Soils from England and Bangladesh,” J. Soil Sci. 37, 259–266 (1986).

    Article  Google Scholar 

  40. H. Kodama and C. Wang, “Distribution and Characterization of Noncrystalline Inorganic Components in Spodosols and Spodosol-Like Soils,” Soil Sci. Soc. Am. J. 53(2), 526–533 (1989).

    Article  Google Scholar 

  41. G. S. R. Krishnamurti and P. M. Huang, “Formation of Lepidocrocite from Iron (II) Solution: Stabilization by Citrate,” Soil Sci. Soc. Am. J. 57, 861–867 (1993).

    Article  Google Scholar 

  42. W. L. Lindsay, “Solubility and Redox Equilibria of Iron Compounds in Soil,” in Iron in Soils and Clay Minerals (Reidel, Dordrecht, 1988), pp. 99–140.

    Google Scholar 

  43. J. Masedo and R. B. Bryant, “Preferential Microbial Reduction of Hematite over Goethite in a Brazilian Oxisol,” Soil Sci. Am. J. 53, 1114–1118 (1989).

    Article  Google Scholar 

  44. J. Majzlan, C. B. Koch and A. Navrotsky, “Thermodynamic Properties of Feroxyhyte (δ-FeOOH),” Clays Clay Miner. 56, 526–530 (2008).

    Article  Google Scholar 

  45. A. Manceau, V. A. Drits, “Local Structure of Ferrihydrite and Feroxyhite by EXAFS Spectroscopy,” Clay Miner. 28, 165–184 (1993).

    Article  Google Scholar 

  46. C. E. Martinez and M. B. McBride, “Coprecipitates of Cd, Cu, Pb and Zn in Iron Oxides: Solid Phase Transformation and Metal Solubility after Aging and Thermal Treatment,” Clays Clay Miner. 46, 537–545 (1998).

    Article  Google Scholar 

  47. A. Matthews, H. S. Morgan-Bell, S. Emmanuel, et al., “Controls on Iron-Isotope Fractionation in Organic-Rich Sediments (Kimmeridge Clay, Upper Jurassic, Southern England),” Geochim. Cosmochim. Acta 68, 3107–3123 (2004).

    Article  Google Scholar 

  48. H. D. Pedersen, D. Postma, and R. Jakobsen, “Release of Arsenic Associated with the Reduction and Transformation of Iron Oxides,” Geochim. Cosmochim. Acta 70, 4116–4129 (2006).

    Article  Google Scholar 

  49. H. D. Pedersen, D. Postma, R. Jakobsen, and O. Larsen, “Fast Transformation of Iron Oxyhydoxides by Catalytic Action of Fe(II),” Geochim. Cosmochim. Acta 69, 3967–3977 (2005).

    Article  Google Scholar 

  50. G. S. Pokrovski, J. Schott, F. Farges, and J.-L. Hazemann, “Iron (III)-Silica Interactions in Aqueous Solution: Insights from X-Ray Absorption Fine Structure Spectroscopy,” Geochim. Cosmochim. Acta 67, 3559–3573 (2003).

    Article  Google Scholar 

  51. J. D. Russell, “Infrared Spectroscopy of Ferrihydrite: Evidence for the Presence of Structural Hydroxyl Groups,” Clays Clay Miner. 14, 109–114 (1979).

    Google Scholar 

  52. U. Schwertmann, “Occurrence and Formation of Iron Oxides in Various Pedoenviroment,” in Iron in Soil and Clay Minerals (Reidel, Dordrecht, 1988), pp. 267–308.

    Google Scholar 

  53. U. Schwertmann, “Some Properties of Soil and Synthetic Iron Oxides,” in Iron in Soil and Clay Minerals (Reidel, Dordrecht, 1988), pp. 203–250.

    Google Scholar 

  54. U. Schwertmann and R. W. Fitzpatrick, “Occurrence of Lepidocrocite and Its Association with Goethite in Natal Soils,” Soil Sci. Soc. Am. J. 41, 1013–1018 (1977).

    Article  Google Scholar 

  55. U. Schwertmann, H. Stanjek, and H.-H. Becher, “Long-Term in Vitro Transformation of 2-Line Ferrihydrite to Goethite/Hematite at 4, 10, 15 and 25°C,” Clay Miner. 39, 433–438 (2004).

    Article  Google Scholar 

  56. U. Schwertmann and R. M. Taylor, “Iron Oxides,” in Minerals in Soil Environments, J. B. Dixon and S. B. Weed (Eds.), (Madison, Wis., 1989), pp. 379–438.

  57. J. L. Skulan, B. L. Beard, and C. M. Johnson, “Kinetic and Equilibrium Fe Isotope Fractionation between Aqueous Fe(III) and Hematite,” Geochim. Cosmochim. Acta. 66, 2995–3015 (2002).

    Article  Google Scholar 

  58. J. W. Stucki, L. Kangwon, B. A. Goodman, and J. E. Kostka, “Effects of in Situ Biostimulation of Iron Mineral Speciation in a Sub-Surface Soil,” Geochim. Cosmochim. Acta 71, 835–843 (2007).

    Article  Google Scholar 

  59. S.-I. Wada and N. Ueno, “Effect of Monosilicic Acid on Hydrolytic Polymerization of Fe(III) and Structure of Hydrolytic Products,” Soil Sci. Plant. Nutr. 47, 727–735 (2001).

    Google Scholar 

  60. J. G. Wiederhold, S. M. Kraemer, N. Teutsch, et al., “Iron Isotope Fractionation during Proton-Promoted, Ligand-Controlled, and Reductive Dissolution of Goethite,” Environ. Sci. Technol. 40, 3787–3793 (2006).

    Article  Google Scholar 

  61. J. G. Wiederhold, N. Teutsch, R. Kretzschmar, et al., “Iron Isotope Fractionation during Soil Formation — Comparison of Ligand and Redox Controlled Processes,” Geochim. Cosmochim. Acta 68, 11 (2004).

    Google Scholar 

  62. N. Yee, S. Shaw, L. G. Benning, and T. N. Nguyen, “The Rate of Ferrihydrite Transformation to Goethite via the Fe(II) Pathway,” Am. Mineral. 91, 92–96 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Vodyanitskii.

Additional information

Original Russian Text © Yu.N. Vodyanitskii, 2010, published in Pochvovedenie, 2010, No. 11, pp. 1341–1352.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vodyanitskii, Y.N. Iron hydroxides in soils: A review of publications. Eurasian Soil Sc. 43, 1244–1254 (2010). https://doi.org/10.1134/S1064229310110074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229310110074

Keywords

Navigation