Skip to main content
Log in

Geochemical fractionation of lanthanides in soils and rocks: A review of publications

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In recent years, lanthanides (Ln) have become an object of active studies by soil scientists and geologists, which is favored by the development of instrumental equipment. It has become possible to obtain reliable soil clarkes of lanthanides. The study of lanthanides in soils is important not only from the theoretical and pedogenetic viewpoints but also because of its applied value, as Ln-containing substances and wastes are used as microfertilizers. The established fact of the geochemical fractionation of lanthanides in soils and rocks appears to be one of the latest significant achievements. The tetrad-effect in lanthanides was revealed and theoretically substantiated. Strong positive anomalies of the Ce content and weak anomalies of the Eu content were found in soils (unlike many rocks). Ferromanganese soil concretions are depleted in Y as compared with light-weight lanthanides. The type of lanthanide fractionation in the course of soil formation in different zones depends on the content of Ln-minerals in the parent rock. In the zone of supergenesis, Mn oxides are among the most important Ln-bearing phases, many of which (Ce, in particular) are classified as manganophilic. In calcite, Ca2+ may be replaced by lanthanides, including Y. Humus acids stabilize Ce3+ and prevent positive cerium anomalies in the newly formed bodies. Microorganisms favor Ln accumulation in biogenic bodies, such as Fe-Mn nodules and Fe-ocher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Vodyanitskii, Heavy and Superheavy Metals and Metalloids in Contaminated Soils (Pochv. inst. im. V.V. Dokuchaeva, Moscow, 2009) [in Russian].

    Google Scholar 

  2. Yu. N. Vodyanitskii and A. T. Savichev, “Potential of the X-Ray Fluorometric Method in the Study of Rare Heavy Metals in Soils,” Agrofizika, No. 2, 2–12 (2011).

  3. E. A. Voronchikhina and E. A. Larionova, Basics of Landscape Chemoecology (Perm, 2002) [in Russian].

  4. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Butterworth-Heinemann, 1997). Translated under the title Khimiya Elementov (Binom, Moscow, 2008), Vols. 1, 2 [in Russian].

  5. B. F. Dzhurinskii, “Periodicity in the Properties of Lanthanoids,” Zh. Neorganich. Khim. 25, 41–46 (1980).

    Google Scholar 

  6. V. V. Ivanov, Environmental Geochemistry of Elements. Book 6. Rare f-Elements (Ekologiya, Moscow, 1997) [in Russian].

    Google Scholar 

  7. A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants (CRS, Boca Raton (USA), 1985). Translated under the title Mikroelementy v pochvakh i rasteniyakh (Mir, Moscow, 1989).

    Google Scholar 

  8. E. A. Muravin and V. I. Titova, Agrochemistry (KolosS, Moscow, 2009) [in Russian].

    Google Scholar 

  9. V. V. Nikonov, N. V. Lukina, and M. V. Frontas’eva, “Trace Elements in Al-Fe-Humus Podzolic Soils Subjected to Aerial Pollution from the Copper-Nickel Production Industry in Conditions of Varying Lithogenic Background,” Pochvovedenie, No. 3, pp. 370–382 (1999) [Eur. Soil Sci. 33 (3), 338–349 (1999)].

  10. L. V. Perelomov, “Interaction of Rare-Earth Elements with Biotic and Abiotic Soil Components,” Agrokhimiya, No. 11, 85–96 (2007).

  11. A. V. Pinevich, Microbiology of Iron and Manganese (Izd. Sankt-Peterb. Gos. Univ., St. Petersburg, 2005) [in Russian].

    Google Scholar 

  12. O. A. Samonova, “Rare-Earth Elements-Lanthanum, Cesium, Samarium, and Europium-in Forest-Steppe Soils of the Privolzhskaya Upland,” Pochvovedenie, No. 6, 45–50 (1992).

  13. V. A. Shatrov and G. V. Voitsekhovskii, “The Use of Lanthanides for Reconstructing Sedimentation Conditions in the Phanerozoic and Proterozoic Eons (by the Example of Geological Sections of the Sedimentary Strata and Basement of the East European Platform),” Geokhimiya, No. 8, 805–824 (2009).

  14. T. A. Yasnygina and S. V. Rasskazov, “Rare-Earth Element Spectra with Tetrad Effect: Manifestation in Paleozoic Granite of the Oka Zone in the Eastern Sayan Range,” Geokhimiya, No. 8, pp. 877–889 (2008).

  15. T. Akagi and A. Masuda, “A Simple Thermodynamic Interpretation of Ce Anomaly,” Geochem. J. 32, pp. 301–314 (1998).

    Article  Google Scholar 

  16. C. R. Anderson and K. Pederson, “In Situ Growth of Gallionella Biofilms and Partitioning of Lanthanides and Actinides Between Biological Material and Ferric Oxyhydroxides,” Geobiology 1, 169–178 (2003).

    Article  Google Scholar 

  17. D. Aubert, P. Stile, and A. Probst, “REE Fractionation during Granite Weathering and Removal by Waters and Suspended Loads: Sr and Nd Isotopic Evidence,” Geochim. Cosmochim. Acta 65, 387–406 (2001).

    Article  Google Scholar 

  18. M. Bau, “Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf and Lanthanide Tetrad Effect,” Contrib. Mineral. Petrol. 123, 323–333 (1996).

    Article  Google Scholar 

  19. M. Bau, “Scavenging of Dissolved Yttrium and Rare Earth by Precipitating Iron Oxyhydroxide: Experimental Evidence for Ce Oxidation, Y-Ho Fractionation, and Lanthanide Tetrad Effect,” Geochim. Cosmochim. Acta 63, 67–77 (1999).

    Article  Google Scholar 

  20. M. Bau and A. Koschinsky, “Oxidative Scavenging of Cerium on Hydrous Fe Oxide: Evidence from the Distribution of Rare Elements and Yttrium Between Fe Oxide and Mn Oxide in Hydrogenetic Ferromanganese Crust,” Geochem. J. 43, 37–47 (2009).

    Article  Google Scholar 

  21. T. J. Beverudge and R. G. E. Murray, “Uptake and Retention of Metal by Cell Walls of Baccilllus Subtiles,” J. Bacterial 127, 1502–1518 (1976).

    Google Scholar 

  22. J. J. Braun, M. Pagel, J. P. Muller, et al., “Cerium Anomalies in Lateritic Profiles,” Geochim. Cosmochim. Acta 51, 597–605 (1990).

    Google Scholar 

  23. J. J. Braun, J. Viers, B. Dupre, et al., “Solid/Liquid REE Fractionation in the Lateritic System of Goyoum, East Cameroon: Implication for the Present Dynamics of the Soil Covers of the Humid Tropical Regions,” Geochim. Cosmochim. Acta 62, 273–299 (1998).

    Article  Google Scholar 

  24. M. Davranche, O. Pourret, G. Gruau, and M. Le Coz-Bouhnir, “Adsorbtion of REE(III)-Humate Complexes onto MnO2: Experimental Evidence for Cerium Anomaly and Lanthanide Tetrad Effect Suppression,” Geochim. Cosmochim. Acta 69, 1203–1219 (2005).

    Article  Google Scholar 

  25. E. H. De Carlo, X.-I. Wen, and M. Irving, “The Influence of Redox Reactions on the Uptake of Dissolved Ce by Suspended Fe and Mn Oxide Particles,” Aquat. Geochem. 3, 357–389 (1998).

    Article  Google Scholar 

  26. A. Dia, G. Gruau, G. Olivie-Lauquet, et al., “The Distribution of Rare Earth Elements in Groundwater: Assessing the Role of Source-Rock Composition, Redox Changes and Colloidal Particles,” Geochim. Cosmochim. Acta 64, 4231–4151 (2000).

    Article  Google Scholar 

  27. E. J. Elzinga, R. J. Reeder, S. H. Withers, et al., “EXAFS Study of Rare Element Coordination in Calcite,” Geochim. Cosmochim. Acta 66, 2875–2885 (2002).

    Article  Google Scholar 

  28. K. B. Esser, J. G. Bockheim, and P. A. Helmke, “Trace Element Distribution in Soils Formed in the Indian Dunes, USA,” Soil Sci. 152, 340–350 (1991).

    Article  Google Scholar 

  29. C. H. Evans, Biochemistry of the Lanthanides (Plenum Press, New York, 1990).

    Google Scholar 

  30. I. Fidelis and S. Siekierski, “The Regularities in Stability Constants of Some Rare Earth Complexes,” J. Inorg. Nucl. Chem. 28, 185–188 (1966).

    Article  Google Scholar 

  31. S. Goldstein and S. B. Jacobson, “Rare Earth Elements in River Waters,” Earth Planet Sci. Lett. 89, 35–47 (1988).

    Article  Google Scholar 

  32. L. P. Gromet and L. T. Silver, “Rare Earth Element Distribution among Minerals in a Granodiorite and Their Petrogenetic Implications,” Geochim. Cosmochim. Acta 47, 925–939 (1983).

    Article  Google Scholar 

  33. Y. Harlavan, Y. Erel, and J. D. Blum, “The Coupled Release of REE and Pb to the Soil Labile Pool with Time by Weathering of Accessory Phases, Wind River Mountains, WY,” Geochim. Cosmochim. Acta 73, 320–336 (2009).

    Article  Google Scholar 

  34. H. Hidaka, P. Holliger, H. Shimizu, and A. Masuda, “Lanthanide Tetrad Observed in the Oklo and Ordinary Uraninites and Its Application for Their Forming Processes,” Geochem. J. 26, 337–346 (1992).

    Article  Google Scholar 

  35. W. Irber, “The Lanthanide Tetrad and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu and Zr/Hf of Evolving Peraluminous Granite Suits,” Geochim. Cosmochim. Acta 63, 489–508 (1999).

    Article  Google Scholar 

  36. G. Jarrar, B. Amireh, and D. Zachmann, “The Major, Trace and Rare Element Geochemistry of Glauconites from Early Cretaceous Kurnab Group of Jordan,” Geochem. J. 34, 207–222 (2000).

    Article  Google Scholar 

  37. B. L. Jollliff, J. J. Papike, and C. K. Shearer, “Inter- and Intro-Crystal REE Variations in Apatite from Bob Ingersoll Pegmatite, Black Hills, South Dakota,” Geochim. Cosmochim. Acta 53, 429–441 (1989).

    Article  Google Scholar 

  38. H. S. Jung, M. S. Choi, D. Kim, et al., “Geochemistry of Rare Earth Elements in Two-Color Core Sediments from the Korea Deep Ocean Study (KODOS)-90 Site, NE Equatorial Pacific,” Geochem. J. 32, 281–299 (1998).

    Article  Google Scholar 

  39. H. Kagi, Y. Dohmoto, S. Takano, and A. Masuda, “Tetrad Effect in Lanthanides Partitioning Between Calcium Sulfate Crystal and Its Saturated Solution,” Chem. Geol. 107, 71–82 (1993).

    Article  Google Scholar 

  40. I. Kawabe, Y. Kitahara, and K. Naito, “Nonchondritic Yttrium/Holmium Ratio and Lanthanide Tetrad Effect Observed in Pre-Cenozoic Limestones,” Geochem. J. 25, 31–44 (1991).

    Article  Google Scholar 

  41. I. Kawabe, A. Ohta, S. Ishu, et al., “REE Portioning Between Precipitates and Weakly Acid NaCl Solutions: Convex Tetrad Effect and Fractionation of Y and Sc from Heavy Lanthanides,” Geochem. J. 33, 167–179 (1999).

    Article  Google Scholar 

  42. A. J. Koppi, R. Edis, D. J. Field, et al., “Rare Earth Trends and Cerium-Uranium-Manganese Association in Weathered Rock from Koongarra, Northern Territory, Australia,” Geochim. Cosmochim. Acta 60, 1695–1707 (1996).

    Article  Google Scholar 

  43. M. Land, B. Ohlander, J. Ingri, and J. Thunberg, “Solid Speciation and Fractionation of Rare Earth Elements in a Spodosol Profile from Northern Sweden as Revealed by Sequential Extraction,” Chem. Geol. 160, 121–138 (1999).

    Article  Google Scholar 

  44. F. Li, X. Shan, T. Zhang, and S. Zhang, “Evaluation of Plant Availability of Rare Elements in Soils by Chemical Fractionation and Multiple Regression Analysis,” Environ. Pollut. 102, 269–277 (1998).

    Article  Google Scholar 

  45. Liu C.-Q., A. Masuda, A. Okada, S. Yabuki, et al., “A Geochemical Study of Loess and Desert Sand in Northern China: Implication for Continental Crust Weathering and Composition,” Chem. Geol. 106, 359–374 (1993).

    Article  Google Scholar 

  46. A. Masuda and T. Akagi, “Lanthanide Tetrad Effect Observed in Leucogranites from China,” Geochem. J. 23, 245–253 (1989).

    Article  Google Scholar 

  47. A. Masuda and Y. Ikeuchi, “Lanthanide Tetrad Effect Observed in Marine Environment,” Geochem. J. 13, 19–22 (1979).

    Article  Google Scholar 

  48. A. Masuda, O. Kawakami, Y. Dohmoto, and T. Takenaka, “Lanthanide Tetrad Effect in Nature: Two Mutually Opposite Types: W and M,” Geochem. J. 21, 119–124 (1987).

    Article  Google Scholar 

  49. M. Minami, A. Masuda, K. Takahashi, and H. Shimizu, “Y-Ho Fractionation and Lanthanide Tetrad Effect Observed in Cherts,” Geochem. J. 32, 405–419 (1998).

    Article  Google Scholar 

  50. J. W. Moffett, “Microbially Mediated Cerium Oxidation in Sea Water,” Nature 345, 421–423 (1990).

    Article  Google Scholar 

  51. T. Monecke, U. Kempe, J. Monecke, et al., “Tetrad Effect in REE Distribution Patterns: A Method Quantification with Application To Rock and Mineral Samples from Granite-Related Rare Metal Deposits,” Geochim. Cosmohim. Acta 66, 1185–1196 (2002).

    Article  Google Scholar 

  52. H. W. Nesbitt, “Mobility and Fractionation of Rare Earth Elements during Weathering of a Granodiarite,” Nature 279, 206–216 (1979).

    Article  Google Scholar 

  53. B. Ohlander, J. Ingri, and H. Schonberg, “Change of Sm-Nd Isotope Composition during Weathering of Till,” Geochim. Cosmochim. Acta 64, 813–820 (2000).

    Article  Google Scholar 

  54. A. Ohta, S. Ishii, M. Sakakibara, et al., “Systematic Correlation of the Ce Anomaly with the Co/(Ni + Cu) Ratio and Y Fractionation from Ho in Distinct Types of Pacific Deep-Sea Nodules,” Geochem. J. 33, 399–417 (1999).

    Article  Google Scholar 

  55. A. Ohta and I. Kawabe, “REE(III) Adsorption Onto Mn Dioxide (δ-MnO2) and Fe Oxyhydroxide: Ce(III) Oxidation by δ-MnO2,” Geochim. Cosmochim. Acta 65, 695–703 (2001).

    Article  Google Scholar 

  56. B. Palumbo, A. Bellanca, R. Neri, and M. J. Roe, “Trace Metal Partitioning in Fe-Mn Nodules from Sicilian Soils, Italy,” Chem. Geol. 173, 257–269 (2001).

    Article  Google Scholar 

  57. D. L. Peppard, G. W. Mason, and S. Lewey, “A Tetrad Effect in the Liquid-Liquid Extraction Ordering of Lanthanides,” J. Inorg. Nucl. Chem. 31, 2271–2272 (1969).

    Article  Google Scholar 

  58. O. Pourret, M. Davranche, G. Gruau, and A. Dia, “Rare Earth Elements Complexation with Humic Acid,” Chem. Geol. J. 243, 128–141 (2007).

    Article  Google Scholar 

  59. M. Seto and A. Akagi, “Chemical Condition for the Appearance of a Negative Ce Anomaly in Stream Waters and Groundwaters,” Geochem. J. 42, pp. 371–380 (2008).

    Article  Google Scholar 

  60. J. E. Sonke and V. J. M. Salters, “Lanthanide-Humic Substances Complexation. I. Experimental Evidence for Lanthanide Contraction Effect,” Geochim. Cosmochim. Acta 70, 1495–1506 (2006).

    Article  Google Scholar 

  61. Y. Takahashi, H. Shimizu, A. Usui, et al., “Direct Observation of Tetravalent Cerium in Ferromanganese Nodules and Crust by X-Ray Absorption Near-Edge Structure (XANES),” Geochim. Cosmochim. Acta 64, 2920–2935 (2000).

    Article  Google Scholar 

  62. Y. Takahashi, A. Manceau, N. Geoffroy, et al., “Chemical and Structural Control of the Partitioning of Co, Ce and Pb in Marine Ferromanganese Oxides,” Geochim. Cosmochim. Acta 71, 984–1008 (2007).

    Article  Google Scholar 

  63. K. Tanaka and I. Kawabe, “REE Abundances in Ancient Seawater Inferred from Marine Limestone and Experimental REE Partition Coefficients between Calcite and Aqueous Solution,” Geochem. J. 40, 425–435 (2006).

    Article  Google Scholar 

  64. K. Tanaka, Y. Nakagashi, and H. Shimizu, “Determination of the Host Phase of Rare Earth Elements in Natural Carbonate Using X-Ray Absorption Near-Edge Structure,” Geochem. J. 43, 143–149 (2009).

    Article  Google Scholar 

  65. K. Tanaka, A. Ohta, and I. Kawabe, “Experimental REE Partitioning between Calcite and Aqueous Solution at 25°C and 1 Atm: Constrains on the Incorporation of Sea Water REE into Seamount-Type Limestones,” Geochem. J. 38, 19–32 (2004).

    Article  Google Scholar 

  66. J. Tang and K. H. Johannesson, “Speciation of Rare Earth Elements in Natural Terrestrial Water: Assessing the Role of Dissolved Organic Matter from the Modeling Approach,” Geochim. Cosmochim. Acta 67, 2304–2513 (2003).

    Article  Google Scholar 

  67. E. Tipping, C. Rey-Castro, S. E. Bryan, and J. Hamilton-Taylor, “Al(III) and Fe(III) Binding by Humic Substances in Freshwaters, and Implications for Trace Metal Speciation,” Geochim. Cosmochim. Acta 66, pp. 3211–3224 (2002).

    Article  Google Scholar 

  68. J. K. Tripathi and V. Rajamani, “Geochemistry and Origin of Ferruginous Nodules in Weathered Granodioritic Gneisses, Mysre Plateau, Southern India,” Ceochim. Cosmochim. Acta 71, pp. 1674–1688 (2007).

    Article  Google Scholar 

  69. T. Tsuruta, “Separation of Rare Elements by Microorganisms,” J. Nucl. Radiochem. 6, 81–84 (2005).

    Google Scholar 

  70. G. Tyler, “Vertical Distribution of Major, Minor, and Rare Elements in Haplic Podzol,” Ceoderma 119, 277–290 (2004).

    Google Scholar 

  71. J. Viers and G. J. Wasserburg, “Behavior of Sm and Nd in a Lateritic Soil Profile,” Geochim. Cosmochim. Acta 68, 2043–2054 (2004).

    Article  Google Scholar 

  72. R. E. Wheatley, “Ochre Deposits and Associated Bacteria in Some Field Drains in Scotland,” J. Soil Sci. 39, 253–264 (1988).

    Article  Google Scholar 

  73. J. Wright, H. Schrader, and W. Holser, “Paleoredox Variation in Ancient Oceans Recorded by Rare Elements in Fossil Apatite,” Geochim. Cosmochim. Acta 51, 631–644 (1987).

    Article  Google Scholar 

  74. Z. M. Wu and B. S. Guo, “Application of Rare Earth Elements in Agriculture and Medicines,” in Bioinorganic Chemistry of Rare Earth Elements, Ed. by J. Z. Ni (Science Press, Beijing, 1995), pp. 13–55.

    Google Scholar 

  75. Z. Zhenhua, X. Xiaolin, H. Xiaodong, et al., “Controls on the REE Tetrad Effect in Granites: Evidence from the Qianishan and Baerzhe Granites, China,” Geochem. J. 36, 527–543 (2002).

    Article  Google Scholar 

  76. Z. H. Zhao, A. Masuda, and M. B. Shabani, “REE Tetrad Effects in Rare Metal Granite,” Chin. J. Geochem. 12, 221–233 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Vodyanitskii.

Additional information

Original Russian Text © Yu.N. Vodyanitskii, 2012, published in Pochvovedenie, 2012, No. 1, pp. 69–81.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vodyanitskii, Y.N. Geochemical fractionation of lanthanides in soils and rocks: A review of publications. Eurasian Soil Sc. 45, 56–67 (2012). https://doi.org/10.1134/S1064229312010164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229312010164

Keywords

Navigation