Skip to main content
Log in

Decomposition of clay minerals in model experiments and in soils: Possible mechanisms, rates, and diagnostics (analysis of literature)

  • Mineralogy and Micromorphology of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The analysis of model experiments on the dissolution of clay minerals showed that, beginning from a certain moment, this process reaches a steady state and proceeds at a constant rate. The minimum dissolution rate was observed in a neutral environment, where this value varied in the range from n × 10−14-n × 10−12 mol/(m2 s). Under acidic and alkaline conditions, this value increased to n × 10−12 or n × 10−10 mol/(m2s) for most clay minerals. The first stage of the dissolution mechanism involved the formation of protonated (in an acidic environment) and deprotonated (in an alkaline environment) complexes, which destabilized and polarized metal-oxygen (or metal-hydroxyl) bonds in the crystal lattice. At the second stage, the rupture of Si-O and Al-O bonds and the release of these components into the solution occurred at a specific concentration of these complexes, and this stage largely controlled the dissolution rate of the mineral. The presence of organic ligands forming mononuclear polydentate complexes on the surface of the mineral particles at the same solution pH increased the dissolution rate of the minerals by several times and sometimes by an order of magnitude proportionally to the concentration of these complexes on the surface of the particles. It was found that the dissolution rates of kaolinite, illite, and smectite in the podzolic horizon of loamy podzolic soil calculated from the losses of clay minerals in the soil profile with consideration for the soil age exceeded the corresponding values obtained in model laboratory experiments at the same pH values by several orders of magnitude. The revealed differences could be related to the long-term functioning of biota in native soils and the existing uncertainties in the assessment of the active surface of mineral particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Aristovskaya, Microbiology of Podzolization Processes (Izd. Akad. Nauk SSSR, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. R. Garrels and Ch. Christ, Solutions, Minerals, and Equilibria (Harper and Row, New York, 1965).

    Google Scholar 

  3. I. I. Ginzburg, “On the Staged Weathering of Micas and Chlorites,” in Mineralogy and Petrography (Izd. Akad. Nauk SSSR, Moscow, 1954) [in Russian].

    Google Scholar 

  4. I. I. Ginzburg, V. V. Belyatskii, L. A. Matveeva, and T. S. Nuzhdenovskaya, The Decomposition of Minerals by Organic Acids (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  5. T. G. Dobrovol’skaya, Structure of Soil Bacterial Communities (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  6. I. V. Zaboeva, Soils and Land Resources of the Komi Autonomous Republic (Komi kn. izd., Syktyvkar, 1975) [in Russian].

    Google Scholar 

  7. D. G. Zvyagintsev, I. P. Bab’eva, and G. M. Zenova, Soil Biology (Izd. Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  8. E. A. Kornblyum, T. G. Dement’eva, N. G. Zyrin, and A. G. Birina, “Changes in Clay Minerals upon the Development of Southern and Vertic Chernozems, Liman Solod, and Solonetz,” Pochvovedenie, No. 1, 107–114 (1972).

  9. E. A. Kornblyum, T. G. Dement’eva, N. G. Zyrin, and A. G. Birina, “Specificity of the Migration and Transformation of Clay Minerals upon the Development of Southern and Vertic Chernozems, Liman Solod, and Solonetz,” Pochvovedenie, No. 5, 115–120 (1972).

  10. V. I. Lebedev, “Some Crystallochemical Regularities of the Formation of Clay Minerals in Light of the Theory of Ion and Atomic Radiuses,” Vestn. Leningr. Univ., Ser. Geol., No. 6, 28–36 (1972).

  11. L. A. Matveeva, E. I. Sokolova, and Z. S. Rozhdestvenskaya, Experimental Study of Al in the Zone of Supergenesis (Izd. Akad. Nauk SSSR, Moscow, 1975) [in Russian].

    Google Scholar 

  12. L. A. Matveeva and Z. S. Rozhdestvenskaya, “On the Effect of Temperature on the Decomposition of Biotite and Nepheline by Natural Organic Acids,” in Weathering Crust Vol. 12, 254–272 (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  13. D. S. Orlov, Soil Chemistry (Izd. Mosk. Gos. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  14. V. V. Ponomareva, Theory of Podzolization Process (Biochemical Aspects) (Izd. Akad. Nauk SSSR, Leningrad, 1964) [in Russian].

    Google Scholar 

  15. A. A. Rode, Podzolization Process (Izd. Akad. Nauk SSSR, Moscow, 1937) [in Russian].

    Google Scholar 

  16. E. I. Sokolova and T. S. Nuzhdenovskaya, “On the Decomposition of Minerals and Removal of Aluminum with Humus Acids,” in Weathering Crust, Vol. 12, 233–253 (Nauka, Moscow, 1972).

    Google Scholar 

  17. T. A. Sokolova, T. Ya. Dronova, and I. I. Tolpeshta, Clay Minerals in Soils (Moscow, 2005) [in Russian].

  18. V. O. Targulian, “Soil Memory: Formation, Carriers, and Spatial-Temporal Diversity,” in Soil Memory (URSS, Moscow, 2008) [in Russian].

    Google Scholar 

  19. V. O. Targulian, “Elementary Pedogenic Processes,” Eur. Soil Sci. 38(12), 1255–1264 (2005).

    Google Scholar 

  20. V. O. Targulian, T. A. Sokolova, A. V. Kulikov, et al., Organization, Composition, and Genesis of a Soddy Pale-Podzolic Soil on Mantle Loam. Analytical Study (Moscow, 1974).

  21. V. O. Targulian and T. A. Sokolova, “Soil as a Biotic /Abiotic Natural System: A Reactor, Memory, and Regulator of Biospheric Interactions,” Eur. Soil Sci. 29(1), 30–41 (1996).

    Google Scholar 

  22. V. O. Targulian, A. D. Fokin, T. A. Sokolova, and S. A. Shoba, “Experimental Studies of Pedogenesis: Possibilities, Limitations, and Prospects,” Pochvovedenie, No. 1, 15–23 (1989).

  23. N. P. Chizhikova, B. P. Gradusov, and L. S. Travnikova, “Specific Features of the Profiles of Clay Material in Soils of the Baraba Forest-Steppe in Relation to Their Evolution,” Nauchn. Dokl. Vyssh. Shk., Biol. Nauki, No. 8, 99–105 (1973).

  24. Elementary Pedogenic Processes. An Experience in Conceptual Analysis, Characterization, and Systematization (Nauka, Moscow, 1992) [in Russian].

  25. L. K. Yakhontova and V. P. Zvereva, Basis of the Mineralogy of Supergenesis (Dal’nauka, Vladivostok, 2000) [in Russian].

    Google Scholar 

  26. L. K. Yakhontova, A. P. Grudev, G. A. Krinari, and G. G. Sidyakina, “X-Ray and Intercalation Characteristics of Kaolinite as Criteria of Its Stability in Bio-Abiotic Interactions,” Dokl. Akad. Nauk SSSR 320(6), 1459–1462 (1991).

    Google Scholar 

  27. J. G. Acker and O. P. Bricker, “The Influence of pH on Biotite Dissolution and Alteration Kinetics at Low Temperature,” Geochim. Cosmochim. Acta 56(8), 3073–3092 (1992).

    Article  Google Scholar 

  28. K. Amram and J. Ganor, “The Combined Effect of pH and Temperature on Smectite Dissolution Rate under Acidic Conditions,” Geochim. Cosmochim. Acta 69(10), 2535–2546 (2005).

    Article  Google Scholar 

  29. J. M. Arocena, K. R. Glowa, H. B. Massicotte, and L. Lavkulich, “Chemical and Mineral Composition of Ectomyccorrizosphere Soils of Subalpine Fir (Abies lasiocarpa (Hook) Nutt.) in the E Horizon of a Luvisol,” Can. J. Soil Sci. 79, 25–35 (1999).

    Article  Google Scholar 

  30. J. M. Arocena and K. R. Glowa, “Mineral Weathering in Ectomycorrhizosphere of Subalpine Fir (Abies lasiocarpa (Hook) Nutt.) as Revealed by Soil Solution Composition,” For. Ecol. Manage. 133, 61–70 (2006).

    Article  Google Scholar 

  31. D. C. Bain, A. Mellor, M. J. Wilson, and D. M. L. Duthie, “Weathering in Scottish and Norwegian Catchments,” The Surface Waters Acidification Programme, Cambridge Univ. Press (1990).

  32. P. Bar-On and J. Shainberg, “Hydrolysis and Decomposition of Na-Montmorillonite in Distilled Water,” Soil Sci. 109(4), 241–246 (1970).

    Article  Google Scholar 

  33. W. A. Basset, “Role of Hydroxyl Orientation in Mica Alteration,” Geo-Mar. Lett. 71(4), 449–456 (1960).

    Google Scholar 

  34. R. A. Berner, “Rate Control of Mineral Dissolution under Earth Surface Conditions,” Am. J. Sci. 278, 1235–1252 (1978).

    Article  Google Scholar 

  35. D. Bosbach, L. Charlet, B. Bickmore, and M. F. Hochella, Jr., “The Dissolution of Hectorite: In Situ, Real-Time Observations Using Atomic Force Microscopy,” Am. Mineral. 85, 1209–1216 (2000).

    Google Scholar 

  36. F. Brandt, D. Bosbach, E. Krawczyk-Bärsch, T. Arnold, G. Bernhard, “Chlorite Dissolution in the Acid pH Range: A Combined Microscopic and Macroscopic Approach,” Geochim. Cosmochim. Acta 67(8), 1451–1461 (2003).

    Article  Google Scholar 

  37. E. Busenberg and C. V. Clemency, “The Dissolution Kinetics of Feldspars at 25°C and 1 Atm CO2 Partial Pressure,” Geochim. Cosmochim. Acta 40, 41–49 (1976).

    Article  Google Scholar 

  38. J. Cama and J. Ganor, “The Effects of pH and Temperature on Kaolinite Dissolution Rate under Acidic Conditions,” Geochim. Cosmochim. Acta 66, 3913–3926 (2002).

    Article  Google Scholar 

  39. J. Cama and J. Ganor, “The Effects of Organic Acids on the Dissolution of Silicate Minerals: A Case Study of Oxalate Catalysis of Kaolinite Dissolution,” Geochim. Cosmochim. Acta 70, 2191–2209 (2006).

    Article  Google Scholar 

  40. S. A. Carrol-Webb and J. V. Walter, “A Surface Complex Reaction Model for the pH-Dependence of Corundum and Kaolinite Dissolution Rates,” Geochim. Cosmochim. Acta 52, 2609–2623 (1988).

    Article  Google Scholar 

  41. S. A. Carrol and J. V. Walther, “Kaolinite Dissolution at 25, 60, and 80°C,” Am. J. Sci. 290, 797–810 (1990).

    Article  Google Scholar 

  42. P. -K. F. Chin and G. L. Mills, “Kinetics and Mechanisms of Kaolinite Dissolution: Effects of Organic Ligands,” Chem. Geol. 90, 307–317 (1991).

    Article  Google Scholar 

  43. J. Chorover and G. Sposito, “Surface Charge Characteristics of Kaolinitic Tropical Soils,” Geochim. Cosmochim. Acta 59(5), 875–884 (1995).

    Article  Google Scholar 

  44. J. Chorover and G. Sposito, “Dissolution Behavior of Kaolinitic Tropical Soils,” Geochim. Cosmochim. Acta 59(15), 3109–3121 (1995b).

    Article  Google Scholar 

  45. F. Courchesne and G. R. Gobran, “Mineralogical Variations of Bulk and Rhizosphere Soils from a Norway Spruce Stand,” Soil Sci. Soc. Am. J. 61, 1245–1249 (1997).

    Article  Google Scholar 

  46. J.-L. Devidal, J. Schott, and J.-L. Dandurand, “An Experimental Study of Kaolinite Dissolution and Precipitation Kinetics as a Function of Chemical Affinity and Solution Composition at 150°C, 40 Bars and pH 2, 6.8 and 7.8,” Geochim. Cosmochim. Acta 61, 5165–5186 (1997).

    Article  Google Scholar 

  47. J. B. Dixon and D. G. Schultze, (Ed.) Soil Mineralogy with Environmental Application (Madison, USA, 2002).

    Google Scholar 

  48. J. I. Drever and L. L. Stilling, “The Role of Organic Acids in Mineral Weathering,” Colloid Surf. A: Physicochem. Engin. Aspects 120, 167–181 (1997).

    Article  Google Scholar 

  49. Q. Du, Z. Sun, and H. Tang, “Acid-Base Properties of Aqueous Illite Surfaces,” J. Colloid Interface Sci. 187, 221–231 (1997).

    Article  Google Scholar 

  50. H. L. Ehrlich, “How Microbes Influence Mineral Growth and Dissolution,” Chem. Geol. 132, 5–9 (1996).

    Article  Google Scholar 

  51. H. L. Ehrlich, Geomicrobiology (Marcel Deccer Inc., Basel, New York, 2002).

    Book  Google Scholar 

  52. F. E. W. Eckhardt, “über Die Einwirkung Heterotropher Mikroorganismen Auf Die Zersetzung Silikatischer Minerale,” Z. Pflanzen. Bodenk. 142, 434–445 (1979).

    Article  Google Scholar 

  53. M. E. Essington, Soil and Water Chemistry. An Integrative Approach (Washington D.C, Boca Raton; London; N.Y., 2004).

  54. G. Furrer and W. Stumm, “The Role of Surface Coordination in the Dissolution of δ-Al2O3 in Dilute Acids,” Chimia 37, 338–341 (1983).

    Google Scholar 

  55. G. Furrer and W. Stumm, “The Coordination Chemistry of Weathering. I. Dissolution Kinetics of δ-Al2O3 and BeO,” Geochim. Cosmochim. Acta 50, 1847–1860 (1986).

    Article  Google Scholar 

  56. G. M. Gadd, “Geomycology: Biogeochemical Transformations of Rocks, Minerals, Metals and Radionuclides by Fungi, Bioweathering and Bioremediation,” Mycol. Res. 111, 3–49 (2007).

    Article  Google Scholar 

  57. F. Gérard, M. Francois, and J. Ranger, “Processes Controlling Silica Concentration in Leaching and Capillary Soil Solutions of an Acidic Brown Forest Soil (Rhone, France),” Geoderma 107, 197–226 (2002).

    Article  Google Scholar 

  58. G. R. Gobran, S. Clegg, and F. Courchesne, “Rhizosphere Processes Influencing the Biogeochemistry of Forest Ecosystems,” Biogeochemistry 42, 107–120 (1998).

    Article  Google Scholar 

  59. S. V. Golubev, A. Bauer, and O. S. Pokrovsky, “Effect of pH and Organic Ligands on the Kinetics of Smectite Dissolution at 25°C,” Geochim. Cosmochim. Acta 70, 4436–4451 (2006).

    Article  Google Scholar 

  60. P. J. Gregory, “Roots, Rhizosphere and Soil: The Rout to a Better Understanding of Soil Science,” Europ. J. Soil Sci. 57, 2–12 (2006).

    Article  Google Scholar 

  61. R. P. Griffits, J. E. Baham, and B. A. Caldwell, “Soil Solution Chemistry of Ectomycorrhizal Mats in Forest Soil,” Soil Biol. Biochem. 26(3), 331–337 (1994).

    Article  Google Scholar 

  62. H. C. Helgeson, “Kinetics of Mass Transfer among Silicates and Aqueous Solutions,” Geochim. Cosmochim. Acta 35, 421–469 (1971).

    Article  Google Scholar 

  63. G. R. Jr. Holdren and R. A. Berner, “Mechanism of Feldspar Weathering. I. Experimental Studies,” Geochim. Cosmochim. Acta 43, 1161–1171 (1979).

    Article  Google Scholar 

  64. D. Hradil and J. Hostomsky, “Effect of Composition and Physical Properties of Natural Kaolinitic Clays on Their Strong Acid Weathering Rates,” Catena 49, 171–181 (2002).

    Article  Google Scholar 

  65. W. H. Huang and W. D. Keller, “Dissolution of Rock-Forming Silicate Minerals in Organic Acids: Simulated First-Stage Weathering of Fresh Mineral Surfaces,” Am. Mineral. 55, 2076–2094 (1970).

    Google Scholar 

  66. W. H. Huang and W. D. Keller, “Dissolution of Clay Minerals in Dilute Organic Acids at Room Temperature,” Am. Mineral. 56, 1082–1095 (1971).

    Google Scholar 

  67. F. J. Huertas, L. Chou, and R. Wollast, “Mechanism of Kaolinite Dissolution at Room Temperature and Pressure: Part 1.Surface Speciation,” Geochim. Cosmochim. Acta 62(3), 417–431 (1998).

    Article  Google Scholar 

  68. F. J. Huertas, L. Chou, and R. Wollast, “Mechanism of Kaolinite Dissolution at Room Temperature and Pressure: Part II. Kinetic Study,” Geochim. Cosmochim. Acta 63(19/20), 3261–3275 (1999).

    Article  Google Scholar 

  69. R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (John Wiley & Sons, New York, 1979).

    Google Scholar 

  70. M. L. Jackson, “Clay Transformation in Soil Genesis during the Quaternary,” Soil Sci. No. 1, 15–22 (1965).

  71. M. L. Jackson, “Weathering of Primary and Secondary Minerals in Soils,” Transact. 9th Int. Congr. Soil Sci., Adelaida, Vol. 4, 281–292 (1968).

    Google Scholar 

  72. B. E. Kalinowski and P. Schweda, “Kinetics of Muscovite, Phlogopite, and Biotite Dissolution and Alteration at pH 1-4, Room Temperature,” Geochim. Cosmochim. Acta 60(3), 367–385 (1996).

    Article  Google Scholar 

  73. J. Kamil and I. Sheinberg, “Hydrolysis of Sodium Montmorillonite in Sodium Chlorite Solutions,” Soil Sci. 106(3), 193–199 (1968).

    Article  Google Scholar 

  74. A. D. Karathanasis, “Mineral Equilibria in Environmental Soil System,” in Soil Mineralogy with Environmental Application (Madison, Wisconsin, USA, 2002), pp. 109–152.

    Google Scholar 

  75. J. A. Kittrick, “Solubility Measurement of Phases in Three Illites,” Clays Clay Miner. 32(2), 115–124 (1984).

    Article  Google Scholar 

  76. H. Kodama, M. Schnitzer, and M. Jaakkimainen, “Chlorite and Biotite Weathering by Fulvic Acid Solutions in Closed and Open Systems,” Can. J. Soil Sci. 63(3), 619–629 (1983).

    Article  Google Scholar 

  77. S. J. Köhler, F. Dufaud, and E. H. Oelkers, “An Experimental Study of Illite Dissolution Kinetics as a Function of pH from 1.4 to 12.4 and Temperature from 5 to 50°C,” Geochim. Cosmochim. Acta 67(19), 3583–3594 (2003).

    Article  Google Scholar 

  78. S. J. Köhler, D. Bosbach, and E. H. Oelkers, “Do Clay Mineral Dissolution Rates Reach Steady State?” Geochim. Cosmochim. Acta 69(8), 1997–2006 (2005).

    Article  Google Scholar 

  79. A. C. Lasaga, “Chemical Kinetics of Water-Rock Interaction,” J. Geophys. Res. 89(Iss. B6), 4009–4025 (1984).

    Article  Google Scholar 

  80. A. Lasaga and R. J. Kirkpatrick, (Eds.) Kinetics of Geochemical Processes, (Miner. Soc. Am., 1981).

  81. A. C. Lasaga and G. V. Gibbs, “Ab-Initio Quantum Mechanical Calculations of Water-Rock Interactions: Adsorption and Hydrolysis Reactions,” Am. J. Sci. 290, 263–295 (1990).

    Article  Google Scholar 

  82. C. Leyval and J. Berthelin, “Weathering of Mica by Roots and Rhizospheric Microorganisms of Pine,” Soil Sci. Soc. Am. J. 55, 1009–1016 (1991).

    Article  Google Scholar 

  83. Y. Li and C. I. Steefel, “Kaolinite Dissolution and Precipitation Kinetics at 22°C and pH 4,” Geochim. Cosmochim. Acta 72(1), 99–116 (2008).

    Article  Google Scholar 

  84. W. L. Lindsay, Chemical Equilibria in Soils (John Wiley and Sons, Chichester; Brisbane; Toronto, New York, 1979).

    Google Scholar 

  85. F. C. Loughnan, Chemical Weathering of Silicate Minerals (Kensington, Australia, 1969).

    Google Scholar 

  86. M. Malstrom and S. Banwort, “Biotite Dissolution at 25°C: The pH Dependence of Dissolution Rate and Stoichiometry,” Geochim. Cosmochim. Acta 61(Iss. 14), 2779–2799 (1997).

    Article  Google Scholar 

  87. P. Marschner, C.-H. Yang, R. Lieberei, and D. E. Crowley, “Soil and Plant Specific Effects on Bacterial Community Composition in the Rhizosphere,” Soil Biol. Biochem. 33, 1437–1455 (2001).

    Article  Google Scholar 

  88. E. Matzner and B. Ulrich, “The Turnover of Protons by Mineralization and Uptake,” in Effect of Accumulation of Air Pollutants on Forest Ecosystems (Reidel, Boston, 1983).

    Google Scholar 

  89. P. A. Maurice, M. A. Viercorn, L. E. Hersman, and J. E. Fulghum, “Dissolution of Well and Poorly Ordered Kaolinites by an Aerobic Bacterium,” Chem. Geol. 180, 81–83 (2001).

    Article  Google Scholar 

  90. K. L. Nagy, A. E. Blum, and A. C. Lasaga, “Dissolution and Precipitation Kinetics of Kaolinite at 80°C and pH 3: The Dependence on Solution Saturation State,” Am. J. Sci. 291, 649–686 (1991).

    Article  Google Scholar 

  91. M. Ochs, “Influence of Humified and Non-Humified Natural Organic Compounds on Mineral Dissolution,” Chem. Geol. 132, 119–124 (1996).

    Article  Google Scholar 

  92. Eric H. Oelkers, J. Schott, J.-M. Gauthier, and T. Herrero-Roncal, “An Experimental Study of the Dissolution Mechanism and Rates of Muscovite,” Geochim. Cosmochim. Acta 72(Iss. 20), 4948–4961 (2008).

    Article  Google Scholar 

  93. J. R. Price, N. Heitmann, J. Hull, and D. Szymanski, “Long-Term Average Mineral Weathering Rates from Watershed Geochemical Mass Balance Methods: Using Mineral Modal Abundances to Solve More Equations in More Unknowns,” Chem. Geol. 254, 36–51 (2008).

    Article  Google Scholar 

  94. M. Robert and M. Razzaghe-Karimi, “Mise en Evedence de Deuz Types d’Evolution Mineralogique des Micas Trioctaedriques en Presence d’Acidies Organiques Hydrosolubles,” C.R. Acad. Sci. (Paris), Vol. 280, Ser. D., pp. 2175–2178 (1975).

  95. M. L. Rozalén, F. J. Huertas, P. V. Brady, J. Cama, S. García-Palma, J. Linares, “Experimental Study of the Effect of pH on the Kinetics of Montmorillonite Dissolution at 25°C,” Geochim. Cosmochim. Acta 72(17), 4224–4253 (2008).

    Article  Google Scholar 

  96. M. Schnitzer and H. Kodama, “The Dissolution of Micas by Fulvic Acid,” Geoderma 15, 381–391 (1976).

    Article  Google Scholar 

  97. J. Schott and J.-C. Petit, “New Evidence for the Mechanisms of Dissolution of Silicate Minerals,” in Aquatic Chemistry (J. Wiley and Sons, N.Y., 1987), pp. 293–315.

    Google Scholar 

  98. J. Schott, R. A. Berner, and E. L. Sjoberg, “Mechanism of Pyroxene and Amphibole Weathering. I. Experimental Studies of Iron-Free Minerals,” Geochim. Cosmochim. Acta 45, 2123–2135.

  99. J. Schott and R. A. Berner, “Dissolution Mechanism of Pyroxenes and Olivines during Weathering,” in The Chemistry of Weathering (D. Reidel Publ. Co., Dodrecht, 1985), pp. 35–53.

    Chapter  Google Scholar 

  100. S. A. Shaw and M. J. Hendry, “Geochemical and Mineralogical Impacts of H2SO4 on Clays Between pH 5.0 and -3.0,” Appl. Geochem. 22(9), 333–345 (2009).

    Article  Google Scholar 

  101. S. A. Shaw, D. Peak, and M. J. Hendry, “Investigation of Acidic Dissolution of Mixed Clays Between pH 1.0 and 3.0 Using Si and Al X-Ray Absorption Near Edge Structure,” Geochim. Cosmochim. Acta 73, 4151–4165 (2009).

    Article  Google Scholar 

  102. L. Sigg and W. Stumm, “The Interactions of Anions and Weak Acids with the Hydrous Goethite (α-FeOOH) Surface,” Coll. Surf. 2, 101–117 (1981).

    Article  Google Scholar 

  103. G. Sposito, The Environmental Chemistry of Aluminum (CRC Press, Boca Raton 1996).

    Google Scholar 

  104. A. Steudel, L. F. Batenburg, H. R. Fischer, P. G. Weidler, and K. Emmerich, “Alteration of Swelling Clay Minerals by Acid Activation,” Appl. Clay Sci. 44, 105–115 (2009).

    Article  Google Scholar 

  105. B. W. Strobel, “Influence of Vegetation on Low-Molecular-Weight Carboxylic Acids in Soil Solution-a Review,” Geoderma 99, 169–198 (2001).

    Article  Google Scholar 

  106. W. Stumm, Chemistry of the Solid-Water Interface (John Wiley & Sons, Chichester, Brisbane, Toronto, Singapore, New York, 1992).

    Google Scholar 

  107. W. Stumm and J. J. Morgan, Aquatic Chemistry (John Wiley and Sons, New York, 1981).

    Google Scholar 

  108. W. Stumm, G. Furrer, E. Wieland, and B. Zinder, “The Effects of Complex-Forming Ligands on the Dissolution of Oxides and Alumino-Silicates,” in The Chemistry of Weathering (D. Reidel Publ. Co., Dordrecht, 1985).

    Google Scholar 

  109. S. H. Sutheimer, P. A. Maurice, and Q. Zhou, “Dissolution of Well and Poorly Crystallized Kaolinites: Al Speciation and Effect of Surface Characteristics,” Am. Mineral. 84, 620–628 (1999).

    Google Scholar 

  110. E. Tertre, S. Castet, G. Berger, M. Loubet, E. Giffaut, “Surface Chemistry of Kaolinite and Na-Montmorillonite in Aqueous Electrolyte Solutions at 25 and 60°C: Experimental and Modeling Study,” Geochim. Cosmochim. Acta 70, 4579–4599 (2006).

    Article  Google Scholar 

  111. B. Ulrich, “Natural and Anthropogenic Components of Soil Acidification,” Z. Pflanzenernaehr. Bodenk. 149, 702–717 (1986).

    Article  Google Scholar 

  112. W. J. Ullman, D. L. Kirchman, S. A. Welch, and Ph. Vandervivere, “Laboratory Evidence for Microbially Mediated Silicate Mineral Dissolution in Nature,” Chem. Geol. 132, 11–17 (1996).

    Article  Google Scholar 

  113. N. van Breemen and W. G. Wielemaker, “Buffer Intensities and Equilibrium pH of Minerals and Soils,” Soil Sci. Soc. Amer 38(1), 55–70 (1974).

    Article  Google Scholar 

  114. P. A. W. van Hees, U. S. Lundstrom, and R. Giesler, “Low-Molecular-Weight Organic Acids and Their Al-Complexes in Soil Solution—Composition, Distribution and Seasonal Variation in Three Podzolized Soils,” Geoderma 94(1–2), 173–200 (2000).

    Article  Google Scholar 

  115. S. A. Welch and W. J. Ullman, “The Effect of Organic Acids on Plagioclase Dissolution Rates and Stoichiometry,” Geochim. Cosmochim. Acta 57(12), 2725–2736 (1993).

    Article  Google Scholar 

  116. A. F. White, A. E. Blum, M. S. Schulz, T. D. Bullen, J. W. Harden, and M. L. Peterson, “Chemical Weathering Rates of a Soil Chronosequence on Granitic Alluvium: I. Quantification of Mineralogical and Surface Area Changes and Calculation of Primary Silicate Reaction Rates,” Geochim. Cosmochim. Acta 60(14), 2533–2550 (1996).

    Article  Google Scholar 

  117. A. F. White and S. L. Brantley, “The Effect of Time on the Weathering of Silicate Minerals: Why Do Weathering Rates Differ in the Laboratory and Field?” Chem. Geol. 202, 479–506 (2003).

    Article  Google Scholar 

  118. E. Wieland and W. Stumm, “Dissolution Kinetics of Kaolinite in Acidic Aqueous Solutions at 25°C,” Geochim. Cosmochim. Acta 56, 3339–3355 (1992).

    Article  Google Scholar 

  119. E. Wieland, B. Wehrli, and W. Stumm, “The Coordination Chemistry of Weathering: III. A Generalization on the Dissolution Rates of Minerals,” Geochim. Cosmochim. Acta 52, 1969–1981 (1988).

    Article  Google Scholar 

  120. R. Wollast, “Kinetics of the Alteration of K-Feldspar in Buffered Solution at Low Temperature,” Geochim. Cosmochim. Acta 31, 635–638 (1967).

    Article  Google Scholar 

  121. M. Zusset and P. W. Schindler, “The Proton Promoted Dissolution Kinetics of K-Montmorillonite,” Geochim. Cosmochim. Acta 60(6), 921–931 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Sokolova.

Additional information

Original Russian Text © T.A. Sokolova, 2013, published in Pochvovedenie, 2013, No. 2, pp. 201–218.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolova, T.A. Decomposition of clay minerals in model experiments and in soils: Possible mechanisms, rates, and diagnostics (analysis of literature). Eurasian Soil Sc. 46, 182–197 (2013). https://doi.org/10.1134/S1064229313020130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229313020130

Keywords

Navigation