Skip to main content
Log in

Contamination of soils and groundwater with new organic micropollutants: A review

  • Degradation, Rehabilitation, and Conservation of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The input of organic micro- and nanopollutants to the environment has grown in recent years. This vast class of substances is referred to as emerging micropollutants, and includes organic chemicals of industrial, agricultural, and municipal provenance. There are three main sources of emerging pollutants coming to the environment, i.e., (1) upon soil fertilization with sewage and sewage sludge; (2) soil irrigation with reclaimed wastewater and (3) due to filtration from municipal landfills of solid wastes. These pollutants contaminate soil, affect its inhabitants; they are also consumed by plants and penetrate to the groundwater. The pharmaceuticals most strongly affect the biota (microorganisms, earthworms, etc.). The response of microorganisms in the contaminated soil is controlled not only by the composition and the number of emerging pollutants but also by the geochemical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Zavarzin and N. N. Kolotilova, Introduction to Environmental Microbiology (Universitet, Moscow, 2001) [in Russian].

    Google Scholar 

  2. A. E. Kuznetsov, N. B. Gradova, S. V. Lushnikov, M. Engel’khart, T. Vaisser, and M. V. Chebotareva, Applied Ecological Biotechnology (BINOM, Moscow, 2013), Vol. 1.

    Google Scholar 

  3. G. V. Motuzova and E. A. Karpova, Chemical Pollution of the Biosphere and Its Environmental Consequences (Moscow State University, Moscow, 2013) [in Russian].

    Google Scholar 

  4. T. O. Poputnikova, V. A. Terekhova, and A. S. Yakovleva, “Assessment of the negative impact of solid municipal wastes using biotic indicators,” Ekol. Prom. Ross., No. 3, 51–53 (2010).

    Google Scholar 

  5. N. A. Andrade, L. L. McConnel, A. Torrents, and M. Ramirez, “Persistence of polybrominated diphenyl ethers in agricultural soils after biosolids applications,” J. Agric. Food Chem., 58, 3077–3084 (2010).

    Article  Google Scholar 

  6. W. J. Andreas, J. R. Masoner, and I. M. Cozzarelli, “Emerging contaminants at a closed and an operating landfills in Oklahoma,” Groundwater Monit. Rem., 32, 120–130 (2012).

    Article  Google Scholar 

  7. L. B. Barber, S. H. Keefe, R. C. Antweiler, H. E. Tayler, and R. D. Wass, “Accumulation of contaminants in fish from wastewater treatment wetlands,” Environ. Sci. Technol. 40, 603–611 (2006).

    Article  Google Scholar 

  8. K. K. Barnes, S. C. Christenson, D. W. Kolpin, M. J. Focazio, et al., “Pharmaceuticals and other organic waste water contaminants within a leachate plume down gradient of a municipal landfill,” Ground Water Monit. Remed., 24, 119–126 (2004).

    Article  Google Scholar 

  9. A. Baun, A. Ledin, L. A. Reitzel, P. L. Bjerg, and T. H. Christensen, “Xenobiotic organic compounds in leachates from ten Danish MSW landfills-chemical analysis and toxicity test,” Water Res. 38, 3845–3858 (2004).

    Article  Google Scholar 

  10. B. D. Blair, J. P. Crago, C. J. Hedman, and R. D. Klaper, “Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern,” Chemosphere 93, 2116–2123 (2013).

    Article  Google Scholar 

  11. O. Borgman and B. Chefetz, “Combined effects of biosolids application and irrigation with re-claimed wastewater on transport of pharmaceuticals compounds in arable soils,” Water Res. 47, 3431–3443 (2013).

    Article  Google Scholar 

  12. A. B. A. Boxall, “The environmental side effects of medication. How are human and veterinary medicines in soils and water bodies affecting human and environmental health,” EMBO Rep., 5, 1110–1116 (2004).

    Article  Google Scholar 

  13. A. B. A. Boxall, P. Johnson, E. J. Smith, C. J. Sincler, E. Stutt, and L. S. Levy, “Uptake of veterinary medicines from soils into plants,” J. Agric. Food Chem., 54, 2288–2297 (2006).

    Article  Google Scholar 

  14. L. J. Carter, C. D. Garman, Ryan J., A. Dowle, E. Bergstrom, J. Tomas-Oates, and A. B. A. Boxall, “Fate and uptake of pharmaceuticals in soil-earthworm systems,” Environ. Sci. Technol. 48, 5955–5963 (2014).

    Article  Google Scholar 

  15. L. J. Carter, E. Harris, M. Williams, J. Ryan, R. S. Kookana, and A. B. A. Boxall, “Fate and uptake of pharmaceuticals in soil-plant systems,” J. Agric. Food Chem., 62, 816–825 (2014).

    Article  Google Scholar 

  16. T. H. Christensen, P. Kjeldsen, P. L. Bjerg, D. L. Jensen, et al., “Biogeochemistry of landfill leachate plumes,” Appl. Geochem., 16, 659–718 (2001).

    Article  Google Scholar 

  17. B. O. Clarke and S. R. Smith, “Review of emerging organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids,” Environ. Int., 37, 226–247 (2011).

    Article  Google Scholar 

  18. I. M. Cozzarelli, J. K. Bohlke, J. Masoner, G. N. Breit, M. M. Larah, M. L. W. Tuttle, and J. B. Jaeschke, “Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma,” Ground Water 49, 663–687 (2011).

    Article  Google Scholar 

  19. P. Dalkmann, C. Siebe, W. Amelung, M. Schloter, and J. Siemens, “Does long-term irrigation with untreated wastewater accelerate the dissipation of pharmaceuticals in soil?” Environ. Sci. Technol. 48, 4963–4970 (2014).

    Article  Google Scholar 

  20. J. M. Diamond, H. A. Latimer, K. R. Mukittick, K. W. Thornton, S. M. Bartell, and K. A. Kidd, “Prioritizing contaminants of emerging concern for ecological screening assessment,” Environ. Toxicol. Chem., 30, 2385–2394 (2011).

    Article  Google Scholar 

  21. T. Eggen, T. N. Asp, K. Grave, and V. Hormazabal, “Uptake and translocation of metformin, ciprofloxacin and narasin in forge- and crop plants,” Chemosphere 85, 26–33 (2011).

    Article  Google Scholar 

  22. T. Eggen, M. Moeder, and A. Arikwe, “A significant source for new and emerging pollutants,” Sci. Total. Environ., 408, 5147–5157 (2010).

    Article  Google Scholar 

  23. K. Esposito, R. Tsuchihashi, and B. Stinson, “Contaminants of emerging concern: considerations for planned indirect potable reuse,” Water World 23 (4), 24 (2007).

    Google Scholar 

  24. M. P. Fernandez, M. G. Ikonomou, and I. Buchanan, “An assessment of estrogenic organic contaminants in Canadian wastewaters,” Sci. Total Environ., 373, 250–269 (2007).

    Article  Google Scholar 

  25. M. O. Gaylor, G. L. Mears, E. Harvey, and R. C. Hale, “Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDEamended soils,” Environ. Sci. Technol. 47, 13831–13839 (2013).

    Article  Google Scholar 

  26. M. Goldstein, M. Shenker, and B. Chefetz, “Insights into the uptake of wastewater-borne pharmaceuticals by vegetables,” Environ. Sci. Technol. 48, 5593–5600 (2014).

    Article  Google Scholar 

  27. N. Gottschall, E. Topp, M. Edwards, M. Payne, S. Kleywegt, P. Russell, and D. R. Lapen, “Hormones, sterols, and fecal indicator bacteria in groundwater, soil, and subsurface drainage following a high single application of municipal biosolids to a field,” Chemosphere 91, 275–286 (2013).

    Article  Google Scholar 

  28. R. C. Hale, M. J. La Guardia, E. Haevey, D. Chen, T. M. Mainor, and D. R. Luellen, “Polybrominated biphenyl ethers in U.S. sewage sludges and biosolids: temporal and geographical trends and uptake by corn following land application,” Environ. Sci. Technol. 46, 2055–2063 (2012).

    Article  Google Scholar 

  29. P. A. Herklotz, P. Gurung, B. van den Heuvel, and C. A. Kinney, “Uptake of human pharmaceutical by plants grown under hydroponic conditions,” Chemosphere 78, 1416–1421 (2010).

    Article  Google Scholar 

  30. J. V. Holm, K. Rugge, P. L. Bjerg, and T. H. Christensen, “Occurrence and distribution of pharmaceutical organic compounds in the groundwater down gradient of a landfill (Grindsted, Denmark),” Environ. Sci. Technol. 29, 1415–1420 (1995).

    Article  Google Scholar 

  31. T. Jager, R. H. L. J. Fleuren, E. A. Hogendoorn, and G. De Kerte, “Elucidating routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta),” Environ. Sci. Technol. 37, 3399–3404 (2003).

    Article  Google Scholar 

  32. C. A. Kinney, E. T. Furlong, D. W. Kolpin, M. R. Burkhardt, et al., “Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure,” Environ. Sci. Technol. 42, 1863–1870 (2008).

    Article  Google Scholar 

  33. C. A. Kinney, E. T. Furlong, S. L. Werner, and J. D. Cahill, “Presence and distribution of wastewaterderived pharmaceuticals in soil irrigated with reclaimed water,” Environ. Toxicol. Chem., 25, 317–326 (2006).

    Article  Google Scholar 

  34. D. W. Kolpin, E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber, and H. T. Buxton, “Pharmaceuticals, hormones and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance,” Environ. Sci. Technol. 36, 1202–1211 (2002).

    Article  Google Scholar 

  35. M. J. La Guardia, R. C. Hale, E. Haevey, T. M. Mainor, and S. Ciparis, “In situ accumulation of HBCD, PBDEs, and several alternative flame retardants in the bivalve (Corbicula fluminea) and gastropod (Elimia proxima),” Environ. Sci. Technol. 46, 5798–5805 (2012).

    Article  Google Scholar 

  36. Z. Lu, Z. He, V. A. Parisi, S. Kang, Y. Deng, J. D. van Nostrand, et al., “GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer,” Environ. Sci. Technol. 46, 5824–5833 (2012).

    Article  Google Scholar 

  37. A. Maoz and B. Chefetz, “Sorption of pharmaceuticals carbamazepine and naproxen to dissolved organic matter: role of structural fractions,” Water Res. 44, 981–989 (2010).

    Article  Google Scholar 

  38. J. R. Masoner, D. W. Koplin, E. T. Furlong, I. M. Cozzarelli, J. L. Gray, and E. A. Schab, “Contaminants of emerging concern in fresh leachate from landfills in the coterminous United States,” Environ. Sci. Process. Impacts, 16, 2335–2354 (2014).

    Article  Google Scholar 

  39. W. A. Mitch and D. L. Sedlak, “Characterization and fate of NDMA precursors in municipal waste-water treatment plants,” Environ. Sci. Technol. 38, 1445–1454 (2004).

    Article  Google Scholar 

  40. P. J. Mouser, D. M. Rizzo, W. F. M. Polling, and B. M. van Breukelen, “A multivariate statistical approach to spatial representation of groundwater contaminant using hydrochemistry and microbial com-munity profiles,” Environ. Sci. Technol. 39, 7551–7559 (2005).

    Article  Google Scholar 

  41. W. Mrozik and J. Stefanska, “Adsorption and biodegradation of antidiabetic pharmaceuticals in soil,” Chemosphere 95, 281–288 (2014).

    Article  Google Scholar 

  42. K. E. Murray, S. M. Thomas, and A. A. Bodour, “Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment,” Environ. Pollut. 158, 3462–3471 (2010).

    Article  Google Scholar 

  43. S. E. Mussen and T. G. Townsend, “Pharmaceutical compound content of municipal solid waste,” J. Hazard Mater., 162, 730–735 (2009).

    Article  Google Scholar 

  44. A. Pal, K. Y.-H. Gin, A. Y.-G. Lin, and M. Reinhard, “Impacts of emerging organic contaminants in freshwater resources: review of recent occurrences, sources, fate, and effects,” Sci. Total Environ., 408, 6062–6069 (2010).

    Article  Google Scholar 

  45. K. E. Pinkston and D. L. Sedlak, “Transformation of aromatic ether- and amine-containing pharmaceuticals during chlorine disinfection,” Environ. Sci. Technol. 38, 4019–4025 (2004).

    Article  Google Scholar 

  46. A. Pruden, R. Pei, H. Storteboom, and K. H. Carlson, “Antibiotic resistance as emerging contaminants: studies in Northern Colorado,” Environ. Sci. Technol. 40, 7445–7450 (2006).

    Article  Google Scholar 

  47. E. J. Rosi-Marshall, D. W. Kincaid, H. A. Bechtold, T. V. Royer, M. Rojas, and J. J. Kelly, “Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms,” Ecol. Appl., 23, 583–593 (2013).

    Article  Google Scholar 

  48. T. Ruan, S. Song, T. Wang, R. Liu, Y. Lin, and G. Jiang, “Identification and composition of emerging quaternary ammonium compounds in municipal sewage sludge in China,” Environ. Sci. Technol. 48, 4289–4297 (2014).

    Article  Google Scholar 

  49. T. Sato, M. Qadir, S. Yamamoto, T. Endo, and A. Zahoor, “Global, regional, and country level need for data on wastewater generation, treatment, and use,” Agric. Water Manage., 130, 1–13 (2013).

    Article  Google Scholar 

  50. J. Schwarzbauer, S. Heim, S. Brinker, and R. Littke, “Occurrence and alteration of organic contaminations in seepage and leakage water from a waste deposit landfills,” Water Res. 36, 2275–2287 (2002).

    Article  Google Scholar 

  51. D. L. Sedlak, R. A. Deed, E. L. Hawley, W. A. Mitch, T. D. Durbin, S. Mowbray, and S. Carr, “Sours and fate of nitrosodimethylamine and its precursors in municipal wastewater treatment plants,” Water Environ. Res., 77, 32–39 (2005).

    Article  Google Scholar 

  52. R. L. Seiler, S. D. Zaugg, J. M. Thomas, and D. L. Howcroft, “Caffeine and pharmaceuticals as indicator of waste water contamination in wells,” Ground Water 37, 405–410 (1999).

    Article  Google Scholar 

  53. M. Shenker, D. Harush, J. Ben-Ari, and B. Chefetz, “Uptake of carbamazepine by cucumber plants—a case study related to irrigation with reclaimed wastewater,” Chemosphere 82, 905–910 (2011).

    Article  Google Scholar 

  54. J. Siemens, G. Huschek, C. Siebe, and M. Kaupenjohann, “Concentration and mobility of human pharmaceuticals in the world’s largest wastewater irrigation system, Mexico City–Mezquital Valley,” Water Res. 42, 2124–2134 (2008).

    Article  Google Scholar 

  55. B. Stumpe and B. Marshner, “Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils,” Environ. Pollut. 158, 148–154 (2010).

    Article  Google Scholar 

  56. J. M. Suflita, C. P. Gerba, R. K. Ham, A. C. Palnisano, W. L. Rathje, and J. A. Robinson, “The world’s largest landfill,” Environ. Sci. Technol. 26, 1486–1495 (1992).

    Article  Google Scholar 

  57. Q. Sui, B. Wang, W. Zhao, J. Huang, G. Yu, S. Deng, and Z. Qiu, “Identification of priority pharmaceuticals in the water environment of China,” Chemosphere 89, 280–286 (2012).

    Article  Google Scholar 

  58. M. Swati, M. T. Rema, and J. Kurian, “Hazardous organic compounds in urban municipal solid waste from a developing country,” J. Hazard. Mater., 160, 213–219 (2008).

    Article  Google Scholar 

  59. T. A. Ternes, M. Bonerz, N. Herrmann, B. Teiser, and H. R. Andersen, “Irrigation of treated waste-water in Braunschweig, Germany: an option to remove pharmaceuticals and musk fragrance,” Chemosphere 66, 894–904 (2007).

    Article  Google Scholar 

  60. A. K. Venkatesan, B. F. G. Pycke, and R. U. Halden, “Detection and occurrence of N-nitrosamines in archived biosolids from the Targeted National Sewage Sludge Survey of the U.S. Environmental Protection Agency,” Environ. Sci. Technol. 48, 5085–5092 (2014).

    Article  Google Scholar 

  61. S. Yamamura, K. Watanabe, W. Suda, S. Tsuboi, and M. Watanabe, “Effect of antibiotics on redox transformation of arsenic and diversity of arsenite-oxidizing bacteria in sediment microbial,” Environ. Sci. Technol. 48, 350–357 (2014).

    Article  Google Scholar 

  62. Y. Zhang, S. A. Boyd, B. J. Teppen, J. M. Tiedje, and H. Li, “Role of tetracycline in the bioavailability to Escherichia coli for uptake and expression of antibiotic resistance,” Environ. Sci. Technol. 48, 4893–4900 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Vodyanitskii.

Additional information

Original Russian Text © Yu.N. Vodyanitskii, A.S. Yakovlev, 2016, published in Pochvovedenie, 2016, No. 5, pp. 609–619.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodyanitskii, Y.N., Yakovlev, A.S. Contamination of soils and groundwater with new organic micropollutants: A review. Eurasian Soil Sc. 49, 560–569 (2016). https://doi.org/10.1134/S1064229316050148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229316050148

Keywords

Navigation